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Conventions

• The Lorentz metric is gµν = diag(+−−−).

• The totally antisymmetric tensor εµνστ satisfies ε0123 = +1.

• We use a chiral basis for the Dirac matrices

γ0 =

(
0 11
11 0

)
γi =

(
0 σi

−σi 0

)

γ5 ≡ iγ0γ1γ2γ3 =

(
−11 0

0 11

)
where the Pauli matrices are

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)

• The quantum of electric charge is e =
√

4πα > 0. I’ll write the charge of

the electron as eQ with Q = −1.

• Compared to Peskin & Schroeder we’ve flipped the signs of the gauge

couplings (e → −e, g → −g) in all vertices and covariant derivatives. So

for example in QED the covariant derivative is Dµ = ∂µ + ieQAµ and

the electron – photon vertex is −ieQγµ. (This is a matter of convention

because only e2 is observable. Our convention agrees with Quigg and is

standard in non-relativistic quantum mechanics.)
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Useful formulas

Propagators: i
p2 −m2 scalar

i(p/ +m)

p2 −m2 spin-1/2

−igµν
k2 massless vector

−i(gµν − kµkν/m2)

k2 −m2 massive vector

Vertex factors: φ4 theory appendix A

spinor and scalar QED appendix A

QCD chapter 10

standard model appendix E

Spin sums:
∑
λ

u(p, λ)ū(p, λ) = p/ +m∑
λ

v(p, λ)v̄(p, λ) = p/−m

 spin-1/2

∑
i

εiµε
i
ν
∗ = −gµν massless vector (QED only)∑

i

εiµε
i
ν
∗ = −gµν +

kµkν
m2 massive vector

In QCD in general one should only sum over physical

gluon polarizations: see p. 113.

Trace formulas:

Tr (odd # γ’s) = 0 Tr
(
(odd # γ’s) γ5

)
= 0

Tr (11) = 4 Tr (γ5) = 0

Tr (γµγν) = 4gµν Tr
(
γµγνγ5

)
= 0

Tr
(
γαγβγγγδ

)
= 4

(
gαβgγδ − gαγgβδ + gαδgβγ

)
Tr
(
γαγβγγγδγ5

)
= 4iεαβγδ
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x Useful formulas

Decay rate 1→ 2 + 3:

In the center of mass frame

Γ =
|p|

8πm2
〈|M|2〉

Here p is the spatial momentum of either outgoing particle and m is the

mass of the decaying particle. If the final state has identical particles,

divide the result by 2.

Cross section 1 + 2→ 3 + 4:

The center of mass differential cross section is(
dσ

dΩ

)
c.m.

=
1

64π2s

|p3|
|p1|
〈|M|2〉

where s = (p1 + p2)2 and |p1|, |p3| are the magnitudes of the spatial

3-momenta. This expression is valid whether or not there are identical

particles in the final state. However in computing a total cross section

one should only integrate over inequivalent final configurations.



Particle properties

Leptons, quarks and gauge bosons:

particle charge mass lifetime / width principal decays

νe, νµ, ντ 0 0 stable –

Leptons e− -1 0.511 Mev stable –

µ− -1 106 Mev 2.2× 10−6 sec e−ν̄eνµ
τ− -1 1780 Mev 2.9× 10−13 sec π−π0ντ , µ−ν̄µντ , e−ν̄eντ

u 2/3 3 MeV – –

c 2/3 1.3 GeV – –

Quarks t 2/3 172 GeV – –

d -1/3 5 MeV – –

s -1/3 100 MeV – –

b -1/3 4.2 GeV – –

photon 0 0 stable –

Gauge bosons W± ±1 80.4 GeV 2.1 GeV W+ → `+ν`, ud̄, cs̄

Z 0 91.2 GeV 2.5 GeV `+`−, νν̄, qq̄

gluon 0 0 – –

xi



xii Particle properties

Pseudoscalar mesons (spin-0, odd parity):

meson quark content charge mass lifetime principal decays

π± ud̄, dū ±1 140 MeV 2.6× 10−8 sec π+ → µ+νµ
π0 (uū− dd̄)/

√
2 0 135 MeV 8.4× 10−17 sec γγ

K± us̄, sū ±1 494 MeV 1.2× 10−8 sec K+ → µ+νµ, π
+π0

K0, K̄0 ds̄, sd̄ 0 498 MeV – –

K0
S K0, K̄0 mix to ” ” 9.0× 10−11 sec π+π−, π0π0

K0
L form K0

S , K0
L ” ” 5.1× 10−8 sec π±e∓νe, π±µ∓νµ, πππ

η (uū+ dd̄− 2ss̄)/
√

6 0 548 MeV 5.1× 10−19 sec γγ, π0π0π0, π+π−π0

η′ (uū+ dd̄+ ss̄)/
√

3 0 958 MeV 3.4× 10−21 sec π+π−η, π0π0η, ρ0γ

isospin multiplets:

 π+

π0

π−

 (
K+

K0

) (
K̄0

K−

)
η η′

strangeness: 0 1 -1 0 0

Vector mesons (spin-1):

meson quark content charge mass width principal decays

ρ ud̄, (uū− dd̄)/
√

2, dū +1, 0, -1 775 MeV 150 MeV ππ

K∗ us̄, ds̄, sd̄, sū +1, 0, 0, -1 892 MeV 51 MeV Kπ

ω (uū+ dd̄)/
√

2 0 783 MeV 8.5 MeV π+π−π0

φ ss̄ 0 1019 MeV 4.3 MeV K+K−, K0
LK

0
S

isospin multiplets:

 ρ+

ρ0

ρ−

 (
K∗+

K∗0

) (
K̄∗0

K∗−

)
ω φ

strangeness: 0 1 -1 0 0



Particle properties xiii

Spin-1/2 baryons:

baryon quark content charge mass lifetime principal decays

p uud +1 938.3 MeV stable –

n udd 0 939.6 MeV 886 sec pe−ν̄e
Λ uds 0 1116 MeV 2.6× 10−10 sec pπ−, nπ0

Σ+ uus +1 1189 MeV 8.0× 10−11 sec pπ0, nπ+

Σ0 uds 0 1193 MeV 7.4× 10−20 sec Λγ

Σ− dds -1 1197 MeV 1.5× 10−10 sec nπ−

Ξ0 uss 0 1315 MeV 2.9× 10−10 sec Λπ0

Ξ− dss -1 1322 MeV 1.6× 10−10 sec Λπ−

isospin multiplets:

(
p

n

)
Λ

 Σ+

Σ0

Σ−

 (
Ξ0

Ξ−

)
strangeness: 0 -1 -1 -2

Spin-3/2 baryons:

baryon quark content charge mass width / lifetime principal decays

∆ uuu, uud, udd, ddd +2, +1, 0, -1 1232 MeV 118 MeV pπ, nπ

Σ∗ uus, uds, dds +1, 0, -1 1387 MeV 39 MeV Λπ, Σπ

Ξ∗ uss, dss 0, -1 1535 MeV 10 MeV Ξπ

Ω− sss -1 1672 MeV 8.2× 10−11 sec ΛK−, Ξ0π−

isospin multiplets:


∆++

∆+

∆0

∆−


 Σ∗+

Σ∗0

Σ∗−

 (
Ξ∗0

Ξ∗−

)
Ω−

strangeness: 0 -1 -2 -3

The particle data book denotes strongly-decaying particles by giving their

approximate mass in parenthesis, e.g. the Σ∗ baryon is known as the Σ(1385).

The values listed for K∗, Σ∗, Ξ∗ are for the state with charge −1.
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The observed interactions can be classified as strong, electromagnetic, weak

and gravitational. Here are some typical decay processes:

strong: ∆0 → pπ− lifetime 6× 10−24 sec

ρ0 → π+π− 4× 10−24 sec

electromag: Σ0 → Λγ 7× 10−20 sec

π0 → γγ 8× 10−17 sec

weak: π− → µ−ν̄µ 2.6× 10−8 sec

n→ pe−ν̄e 15 minutes

The extremely short lifetime of the ∆0 indicates that the decay is due to the

strong force. Electromagnetic decays are generally slower, and weak decays

are slower still. Gravity is so weak that it has no influence on observed

particle physics (and will hardly be mentioned for the rest of this course).

The observed particles can be classified into

• hadrons: particles that interact strongly (as well as via the electromag-

netic and weak forces). Hadrons can either carry integer spin (‘mesons’)

or half-integer spin (‘baryons’). Literally hundreds of hadrons have been

detected: the mesons include π, K, η, ρ,. . . and the baryons include p, n,

∆, Σ, Λ,. . .

• charged leptons: these are spin-1/2 particles that interact via the electro-

magnetic and weak forces. Only three are known: e, µ, τ .

• neutral leptons (also known as neutrinos): spin-1/2 particles that only

feel the weak force. Again only three are known: νe, νµ, ντ .

• gauge bosons: spin-1 particles that carry the various forces (gluons for the

1



2 The particle zoo

strong force, the photon for electromagnetism, W± and Z for the weak

force).

All interactions have to respect some familiar conservation laws, such as

conservation of charge, energy, momentum and angular momentum. In ad-

dition there are some conservation laws that aren’t so familiar. For example,

consider the process

p→ e+π0 .

This process respects conservation of charge and angular momentum, and

there is plenty of energy available for the decay, but it has never been ob-

served. In fact as far as anyone knows the proton is stable (the lower bound

on the proton lifetime is 1031 years). How to understand this? Introduce a

conserved additive quantum number, the ‘baryon number’ B, with B = +1

for baryons, B = −1 for antibaryons, and B = 0 for everyone else. Then

the proton (as the lightest baryon) is guaranteed to be absolutely stable.

There’s a similar law of conservation of lepton number L. In fact, in the

lepton sector, one can make a stronger statement. The muon is observed to

decay weakly, via

µ− → e−ν̄eνµ .

However the seemingly allowed decay

µ− → e−γ

has never been observed, even though it respects all the conservation laws

we’ve talked about so far. To rationalize this we introduce separate conser-

vation laws for electron number, muon number and tau number Le, Lµ, Lτ .

These are defined in the obvious way, for instance

Le = +1 for e− and νe

Le = −1 for e+ and ν̄e

Le = 0 for everyone else

Note that the observed decay µ− → e−ν̄eνµ indeed respects all these con-

servation laws.

So far all the conservation laws we’ve introduced are exact (at least, no

violation has ever been observed). But now for a puzzle. Consider the decay

K+ → π+π0 observed with ≈ 20% branching ratio

The initial and final states are all strongly-interacting (hadronic), so you
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might expect that this is a strong decay. However the lifetime of the K+

is 10−8 sec, characteristic of a weak decay. To understand this Gell-Mann

and Nishijima proposed to introduce another additive conserved quantum

number, called S for ‘strangeness.’ One assigns some rather peculiar values,

for example S = 0 for p and π, S = 1 for K+ and K0, S = −1 for Λ

and Σ, S = −2 for Ξ. Strangeness is conserved by the strong force and

by electromagnetism, but can be violated by weak interactions. The decay

K+ → π+π0 violates strangeness by one unit, so it must be a weak decay. If

this seems too cheap I should mention that strangeness explains more than

just kaon decays. For example it also explains why

Λ→ pπ−

is a weak process (lifetime 2.6× 10−10 sec).

Now for another puzzle: there are some surprising degeneracies in the

hadron spectrum. For example the proton and neutron are almost degener-

ate, mp = 938.3 MeV while mn = 939.6 MeV. Similarly mΣ+ = 1189 MeV

while mΣ0 = 1193 MeV and mΣ− = 1197 MeV. Another example is mπ± =

140 MeV and mπ0 = 135 MeV. (π+ and π− have exactly the same mass

since they’re a particle / antiparticle pair.)

Back in 1932 Heisenberg proposed that we should regard the proton and

neutron as two different states of a single particle, the “nucleon.”

|p〉 =

(
1

0

)
|n〉 =

(
0

1

)
This is very similar to the way we represent a spin-up electron and spin-

down electron as being two different states of a single particle. Pushing

this analogy further, Heisenberg proposed that the strong interactions are

invariant under “isospin rotations” – the analog of invariance under ordinary

rotations for ordinary angular momentum. Putting this mathematically, we

postulate some isospin generators Ii that obey the same algebra as angular

momentum, and that commute with the strong Hamiltonian.

[Ii, Ij ] = iεijkIk [Ii, Hstrong] = 0 i, j, k ∈ {1, 2, 3}

We can group particles into isospin multiplets, for example the nucleon

doublet (
p

n

)
has total isospin I = 1/2, while the Σ’s and π’s are grouped into isotriplets
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with I = 1:  Σ+

Σ0

Σ−

  π+

π0

π−


Note that isospin is definitely not a symmetry of electromagnetism, since

we’re grouping together particles with different charges. It’s also not a

symmetry of the weak interactions, since for example the weak decay of the

pion π− → µ−ν̄µ violates isospin. Rather the claim is that if we could “turn

off” the electromagnetic and weak interactions then isospin would be an

exact symmetry and the proton and neutron would be indistinguishable.†
(For ordinary angular momentum, this would be like having a Hamiltonian

that can be separated into a dominant rotationally-invariant piece plus a

small non-invariant perturbation. If you like, the weak and electromagnetic

interactions pick out a preferred direction in isospin space.)

At this point isospin might just seem like a convenient book-keeping de-

vice for grouping particles with similar masses. But you can test isospin in

a number of non-trivial ways. One of the classic examples is pion – pro-

ton scattering. At center of mass energies around 1200 MeV scattering is

dominated by the formation of an intermediate ∆ resonance.

π+p→ ∆++ → anything

π0p→ ∆+ → anything

π−p→ ∆0 → anything

The pion has I = 1, the proton has I = 1/2, and the ∆ has I = 3/2.

Now recall the Clebsch-Gordon coefficients for adding angular momentum

(J = 1)⊗ (J = 1/2) to get (J = 3/2).

notation: |J,M〉 =
∑

m1,m2
CJ,Mm1,m2 |J1,m1〉 |J2,m2〉

|3/2, 3/2〉 = |1, 1〉 |1/2, 1/2〉

|3/2, 1/2〉 =
1√
3
|1, 1〉 |1/2,−1/2〉+

√
2

3
|1, 0〉 |1/2, 1/2〉

|3/2,−1/2〉 =

√
2

3
|1, 0〉 |1/2,−1/2〉+

√
1

3
|1,−1〉 |1/2, 1/2〉

|3/2,−3/2〉 = |1,−1〉 |1/2,−1/2〉
† As we’ll see isospin is also violated by quark masses. To the extent that one regards quark

masses as a part of the strong interactions, one should say that even Hstrong has a small
isospin-violating component.
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From this we can conclude that the amplitudes stand in the ratio

〈π+p|Hstrong|∆++〉 : 〈π0p|Hstrong|∆+〉 : 〈π−p|Hstrong|∆0〉 = 1 :

√
2

3
:

√
1

3

This is either obvious (if you don’t think about it too much), or a special

case of the Wigner-Eckart theorem.† Anyhow you’re supposed to prove it

on the homework.

Since we don’t care what the ∆ decays to, and since decay rates go like

the | · |2 of the matrix element (Fermi’s golden rule), we conclude that near

1200 MeV the cross sections should satisfy

σ(π+p→ X) : σ(π0p→ X) : σ(π−p→ X) = 1 :
2

3
:

1

3

This fits the data quite well. See the plots on the next page.

The conservation laws we’ve discussed in this chapter are summarized in

the following table.

conservation law strong EM weak

energy E X X X
charge Q X X X
baryon # B X X X
lepton #’s Le, Lµ, Lτ X X X
strangeness S X X ×
isospin I X × ×

References

The basic forces, particles and conservation laws are discussed in the intro-

ductory chapters of Griffiths and Halzen & Martin. Isospin is discussed in

section 4.5 of Griffiths.

† For the general formalism see Sakurai, Modern Quantum Mechanics p. 239.
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39. Plots of cross sections and related quantities 010001-13
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Figure 39.14: Total and elastic cross sections for π±p and π±d (total only) collisions as a function of laboratory beam momentum and total
center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html (Courtesy of
the COMPAS Group, IHEP, Protvino, Russia, August 2001.)



Exercises 7

Exercises

1.1 Decays of the spin–3/2 baryons

The spin–3/2 baryons in the “baryon decuplet” (∆, Σ∗, Ξ∗, Ω)

are all unstable. The ∆, Σ∗ and Ξ∗ decay strongly, with a lifetime

∼ 10−23 sec. The Ω, however, decays weakly (lifetime ∼ 10−10 sec).

To see why this is, consider the following decays:

1. ∆+ → pπ0

2. Σ∗− → Λπ−

3. Σ∗− → Σ−π0

4. Ξ∗− → Ξ−π0

5. Ω− → Ξ−K̄0

6. Ω− → ΛK−

(i) For each of these decays, which (if any) of the conservation laws

we discussed are violated? You should check E,Q,B, S, I.

(ii) Based on this information, which (if any) interaction is respon-

sible for these decays?

1.2 Decays of the spin–1/2 baryons

Most of the spin–1/2 baryons in the “baryon octet” (nucleon, Λ,

Σ, Ξ) decay weakly to another spin–1/2 baryon plus a pion. The

two exceptions are the Σ0 (which decays electromagnetically) and

the neutron (which decays weakly to pe−ν̄e). To see why this is,

consider the following decays:

1. Ξ− → ΛK−

2. Ξ− → Λπ−

3. Σ− → Λπ−

4. Σ− → nπ−

5. Σ0 → Λγ

6. Λ→ nπ0

7. n→ pπ−

8. n→ pe−ν̄e

(i) For each of these decays, which (if any) of the conservation laws

we discussed are violated? You should check E,Q,B,L, S, I.
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(ii) Based on this information, which (if any) interaction is respon-

sible for these decays? You can assume a photon indicates an

electromagnetic process, while a neutrino indicates a weak pro-

cess.

1.3 Meson decays

Consider the following decays:

1. π− → e−ν̄e
2. π0 → γγ

3. K− → π−π0

4. K− → µ−ν̄µ
5. η → γγ

6. η → π0π0π0

7. ρ− → π−π0

(i) For each of these decays, which (if any) of the conservation laws

we discussed are violated? You should check E,Q,B,L, S, I.

(ii) Based on this information, which interaction is responsible for

these decays? You can assume a photon indicates an electromag-

netic process, while a neutrino indicates a weak process.

(iii) Look up the lifetimes of these particles. Do they fit with your

expectations?

1.4 Isospin and the ∆ resonance

Suppose the strong interaction Hamiltonian is invariant under an

SU(2) isospin symmetry, [Hstrong, I] = 0. By inserting suitable

isospin raising and lowering operators I± = I1 ± iI2 show that (up

to possible phases)

1√
3
〈∆++|Hstrong|π+p〉 =

1√
2
〈∆+|Hstrong|π0p〉 = 〈∆0|Hstrong|π−p〉 .

1.5 Decay of the Ξ∗

The Ξ∗ baryon decays primarily to Ξ + π. For a neutral Ξ∗ there

are two possible decays:

Ξ∗0 → Ξ0π0

Ξ∗0 → Ξ−π+

Use isospin to predict the branching ratios.
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1.6 ∆I = 1/2 rule

The Λ baryon decays weakly to a nucleon plus a pion. The Hamil-

tonian responsible for the decay is

H =
1√
2
GF ūγ

µ(1− γ5)d s̄γµ(1− γ5)u+ c.c.

This operator changes the strangeness by ±1 and the z component

of isospin by ∓1/2. It can be decomposed H = H3/2 + H1/2 into

pieces which carry total isospin 3/2 and 1/2, since ūγµ(1 − γ5)d

transforms as |1,−1〉 and s̄γµ(1−γ5)u transforms as |1/2, 1/2〉. The

(theoretically somewhat mysterious) “∆I = 1/2 rule” states that the

I = 1/2 part of the Hamiltonian dominates.

(i) Use the ∆I = 1/2 rule to relate the matrix elements 〈p π−|H|Λ〉
and 〈nπ0|H|Λ〉.

(ii) Predict the corresponding branching ratios for Λ → pπ− and

Λ→ nπ0.

The PDG gives the branching ratios Λ → pπ− = 63.9% and Λ →
nπ0 = 35.8%.
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Last time we encountered a zoo of conservation laws, some of them only

approximate. In particular baryon number was exactly conserved, while

strangeness was conserved by the strong and electromagnetic interactions,

and isospin was only conserved by the strong force. Our goal for the next few

weeks is to find some order in this madness. Since the strong interactions

seem to be the most symmetric, we’re going to concentrate on them. Ulti-

mately we’re going to combine B, S and I and understand them as arising

from a symmetry of the strong interactions.

At this point, it’s not clear how to get started. One idea, which several

people explored, is to extend SU(2) isospin symmetry to a larger symmetry

– that is, to group different isospin multiplets together. However if you list

the mesons with odd parity, zero spin, and masses less than 1 GeV

π±, π0 135 to 140 MeV

K±, K0, K̄0 494 to 498 MeV

η 548 MeV

η′ 958 MeV

it’s not at all obvious how (or whether) these particles should be grouped

together. Somehow this didn’t stop Gell-Mann, who in 1961 proposed that

SU(2) isospin symmetry should be extended to an SU(3) flavor symmetry.

2.1 Tensor methods for SU(N) representations

SU(2) is familiar from angular momentum, but before we can go any further

we need to know something about SU(3) and its representations. It turns

out that we might as well do the general case of SU(N).

10
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First some definitions; if you need more of an introduction to group theory

see section 4.1 of Cheng & Li. SU(N) is the group of N×N unitary matrices

with unit determinant,

UU † = 11, detU = 1 .

We’re interested in representations of SU(N). This just means we want a

vector space V and a rule that associates to every U ∈ SU(N) a linear oper-

ator D(U) that acts on V . The key property that makes it a representation

is that the multiplication rule is respected,

D(U1)D(U2) = D(U1U2)

(on the left I’m multiplying the linear operators D(U1) and D(U2), on the

right I’m multiplying the two unitary matrices U1 and U2).

One representation of SU(N) is almost obvious from the definition: just

set D(U) = U . That is, let U itself act on an N -component vector z.

z→ Uz

This is known as the fundamental orN -dimensional representation of SU(N).

Another representation is not quite so obvious: set D(U) = U∗. That is,

let the complex conjugate matrix U∗ act on an N -component vector.

z→ U∗z

In this case we need to check that the multiplication law is respected; for-

tunately

D(U1)D(U2) = U∗1U
∗
2 = (U1U2)∗ = D(U1U2) .

This is known as the antifundamental or conjugate representation of SU(N).

It’s often denoted N̄.

At this point it’s convenient to introduce some index notation. We’ll write

the fundamental representation as acting on a vector with an upstairs index,

zi → U ijz
j

where U ij ≡ (ij element of U). We’ll write the conjugate representation as

acting on a vector with a downstairs index,

zi → Ui
jzj

where Ui
j ≡ (ij element of U∗). We take complex conjugation to exchange

upstairs and downstairs indices.

Given any number of fundamental and conjugate representations we can
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multiply them together (take a tensor product, in mathematical language).

For example something like xiy
jzk would transform under SU(N) according

to

xiy
jzk → Ui

lU jmU
k
n xly

mzn .

Such a tensor product representation is in general reducible. This just means

that the linear operators D(U) can be simultaneously block-diagonalized, for

all U ∈ SU(N).

We’re interested in breaking the tensor product up into its irreducible

pieces. To accomplish this we can make use of the following SU(N)-invariant

tensors:

δij Kronecker delta

εi1···iN totally antisymmetric Levi-Civita

εi1···iN another totally antisymmetric Levi-Civita

Index positions are very important here: for example δij with both indices

downstairs is not an invariant tensor. It’s straightforward to check that

these tensors are invariant; it’s mostly a matter of unraveling the notation.

For example

δij → U ikUj
lδkl = U ikUj

k = U ik(U
∗)jk = U ik(U

†)kj = (UU †)ij = δij

One can also check

εi1···iN → U i1j1 · · ·U iN jN εj1···jN = detU εi1···iN = εi1···iN

with a similar argument for εi1···iN .

Decomposing tensor products is useful in its own right, but it also provides

a way to make irreducible representations of SU(N). The procedure for

making irreducible representations is

1. Start with some number of fundamental and antifundamental represen-

tations: say m fundamentals and n antifundamentals.

2. Take their tensor product.

3. Use the invariant tensors to break the tensor product up into its irre-

ducible pieces.

The claim (which I won’t try to prove) is that by repeating this procedure

for all values of m and n, one obtains all of the irreducible representations

of SU(N).†
† Life isn’t so simple for other groups.
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2.2 SU(2) representations

To get oriented let’s see how this works for SU(2). All the familiar results

about angular momentum can be obtained using these tensor methods.

First of all, what are the irreducible representations of SU(2)? Let’s

start with a general tensor T i1i2···imj1j2···jn . Suppose we’ve already classified all

representations with fewer than k = m+ n indices; we want to identify the

new irreducible representations that appear at rank k. First note that by

contracting with εij we can move all indices upstairs; for example starting

with an antifundamental zi we can construct

εijzj

which transforms as a fundamental. So we might as well just look at tensors

with upstairs indices: T i1···ik . We can break T up into two pieces, which are

either symmetric or antisymmetric under exchange of i1 with i2:

T i1···ik =
1

2

(
T i1i2···ik + T i2i1···ik

)
+

1

2

(
T i1i2···ik − T i2i1···ik

)
.

The antisymmetric piece can be written as εi1i2 times a tensor of lower rank

(with k − 2 indices). So let’s ignore the antisymmetric piece, and just keep

the piece which is symmetric on i1 ↔ i2. If you repeat this symmetrization

/ antisymmetrization process on all pairs of indices you’ll end up with a

tensor Si1···ik that is symmetric under exchange of any pair of indices. At

this point the procedure stops: there’s no way to further decompose S using

the invariant tensors.

So we’ve learned that SU(2) representations are labeled by an integer

k = 0, 1, 2, . . .; in the kth representation a totally symmetric tensor with k

indices transforms according to

Si1···ik → U i1j1 · · ·U ik jkSj1···jk

To figure out the dimension of the representation (meaning the dimension of

the vector space) we need to count the number of independent components

of such a tensor. This is easy, the independent components are

S1···1, S1···12, S1···122, . . . , S2···2

so the dimension of the representation is k + 1.

In fact we have just recovered all the usual representations of angular

momentum. To make this more apparent we need to change terminology a

bit: we define the spin by j ≡ k/2, and call Si1...i2j the spin-j representation.
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The dimension of the representation has the familiar form, dim(j) = 2j+ 1.

Some examples:

representation tensor name dimension spin

k = 0 trivial 1 j = 0

k = 1 zi fundamental 2 j = 1/2

k = 2 Sij symmetric tensor 3 j = 1
...

...
...

...
...

All the usual results about angular momentum can be reproduced in ten-

sor language. For example, consider addition of angular momentum. With

two spin-1/2 particles the total angular momentum is either zero or one. To

see this in tensor language one just multiplies two fundamental representa-

tions and then decomposes into irreducible pieces:

ziwj =
1

2

(
ziwj + zjwi

)
+

1

2

(
ziwj − zjwi

)
The first term is symmetric so it transforms in the spin one representation.

The second term is antisymmetric so it’s proportional to εij and hence has

spin zero.

2.3 SU(3) representations

Now let’s see how things work for SU(3). Following the same procedure,

we start with an arbitrary tensor T i1i2···j1j2··· . First let’s work on the upstairs

indices. Decompose

T i1i2···imj1j2···jn = (piece that’s symmetric on i1 ↔ i2)

+(piece that’s antisymmetric on i1 ↔ i2) .

The antisymmetric piece can be written as

εi1i2kT̃ i3i4···imkj1j2···jn

in terms of a tensor T̃ with lower rank (two fewer upstairs indices but one

more downstairs index). So we can forget about the piece that’s antisymmet-

ric on i1 ↔ i2. Repeating this procedure for all upstairs index pairs, we end

up with a tensor that’s totally symmetric on the upstairs indices. Following

a similar procedure with the help of εijk, we can further restrict attention to

tensors that are symmetric under exchange of any two downstairs indices.
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For SU(3) there’s one further decomposition we can make. We can write

Si1i2···imj1j2···jn =
1

3
δi1j1S

ki2···im
kj2···jn + S̃i1i2···imj1j2···jn

where S̃ is traceless on it’s first indices, S̃ki2···imkj2···jn = 0. Throwing out the

trace part, and repeating this procedure on all upstairs / downstairs index

pairs, we see that SU(3) irreps act on tensors T i1i2···imj1j2···jn that are

• symmetric under exchange of any two upstairs indices

• symmetric under exchange of any two downstairs indices

• traceless, meaning if you contract any upstairs index with any downstairs

index you get zero

This is known as the

(
m

n

)
representation of SU(3). Some examples:

representation tensor name dimension notation(
0

0

)
trivial 1 1(

1

0

)
zi fundamental 3 3(

0

1

)
zi conjugate 3 3̄(

2

0

)
Sij symmetric tensor 6 6(

1

1

)
T ij adjoint 8 8(

0

2

)
Sij symmetric tensor 6 6̄(

3

0

)
Sijk symmetric tensor 10 10

...
...

...
...

...

Using these methods we can reduce product representations (the SU(3)

analog of adding angular momentum). For example, to reduce the product

3⊗ 3 we can write

ziwj =
1

2

(
ziwj + zjwi

)
+

1

2
εijkvk
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where vk = εklmz
lvm. In terms of representations this means

3⊗ 3 = 6⊕ 3̄ .

As another example, consider 3⊗ 3̄.

ziwj =

(
ziwj −

1

3
δijz

kwk

)
+

1

3
δijz

kwk

⇒ 3⊗ 3̄ = 8⊕ 1

Finally, let’s do 6⊗ 3.

Sijzk =
1

3

(
Sijzk + Sjkzi + Skizj

)
+

2

3
Sijzk − 1

3
Sjkzi − 1

3
Skizj

=
1

3
Sijk +

1

3
T il ε

ljk +
1

3
T jl ε

lik

where Sijk = Sijzk + (cyclic perms) is in the

(
3

0

)
, and T il = εlmnS

imzn

is in the

(
1

1

)
. That is, we’ve found that

6⊗ 3 = 10⊕ 8 .

If you want to keep going, it makes sense to develop some machinery to

automate these calculations – but fortunately, this is all we’ll need.

2.4 The eightfold way

Finally, some physics. Gell-Mann and Ne’eman proposed that the strong

interactions have an SU(3) symmetry, and that all light hadrons should be

grouped into SU(3) multiplets. As we’ve seen, all SU(3) multiplets can be

built up starting from the 3 and 3̄. So at least as a mnemonic it’s convenient

to think in terms of elementary quarks and antiquarks

q =

 u

d

s

 in 3

q̄ =

 ū

d̄

s̄

 in 3̄

Here I’m embedding the SU(2) isospin symmetry inside SU(3) via(
U 0

0 1

)
∈ SU(3) .
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I’m also going to be associating one unit of strangeness with s̄.† That is, in

terms of isospin / strangeness the 3 of SU(3) decomposes as

3 = 20 ⊕ 1−1 .

(On the left hand side we have an SU(3) representation, on the right hand

side I’m labeling SU(2) representations by their dimension and putting

strangeness in the subscript.) The idea here is that (although they’re both

exact symmetries of the strong force) isospin is a better approximate sym-

metry than SU(3)flavor, so isospin multiplets will be more nearly degenerate

in mass than SU(3) multiplets.

All mesons are supposed to be quark – antiquark states. In terms of SU(3)

representations we have 3 ⊗ 3̄ = 8 ⊕ 1, so mesons should be grouped into

octets (hence the name “eightfold way”) and singlets. Further decomposing

in terms of isospin and strangeness

(20 ⊕ 1−1)⊗ (20 ⊕ 1+1) = (2⊗ 2)0⊕21⊕2−1⊕10 = 30⊕10⊕21⊕2−1⊕10

That is, we should get

an isospin triplet with strangeness = 0 π+, π0, π−

an isospin doublet with strangeness = +1 K+, K0

an isospin doublet with strangeness = -1 K̄0, K−

two singlets with strangeness = 0 η, η′

Not bad!

The baryons are supposed to be 3-quark states. In terms of SU(3) repre-

sentations we have 3⊗3⊗3 = (6⊕3̄)⊗3 = 10⊕8⊕8⊕1 so we get decuplets,

octets and singlets. As an example, let’s decompose the decuplet in terms

of isospin and strangeness. Recall that the 10 is a symmetric 3-index tensor

so

[(20 ⊕ 1−1)⊗ (20 ⊕ 1−1)⊕ (20 ⊕ 1−1)]symmetrized

= (2⊗ 2⊗ 2)symmetrized, 0 ⊕ (2⊗ 2)symmetrized,−1 ⊕ 2−2 ⊕ 1−3

= 40 ⊕ 3−1 ⊕ 2−2 ⊕ 1−3

(It’s very convenient to think about the symmetrized SU(2) products in

tensor language.) That is, we should get

† When strangeness was first introduced people didn’t know about quarks. They gave the K+

strangeness +1, but it turns out the K+ contains an s̄ quark. Sorry about that.
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isospin 3/2 with strangeness = 0 ∆++, ∆+, ∆0, ∆−

isospin 1 with strangeness = -1 Σ∗+, Σ∗0, Σ∗−

isospin 1/2 with strangeness = -2 Ξ∗0, Ξ∗−

isospin 0 with strangeness = -3 Ω−

One can’t help but be impressed.

2.5 Symmetry breaking by quark masses

Having argued that hadrons should be grouped into SU(3) multiplets, we’d

now like to understand the SU(3) breaking effects that give rise to the

(rather large) mass splittings observed within each multiplet. It might seem

hopeless to understand SU(3) breaking at this point, since we’ve argued

that so many things (electromagnetism, weak interactions) violate SU(3).

But fortunately there are some SU(3) breaking effects – namely quark mass

terms – which are easy to understand and are often the dominant source of

SU(3) breaking.

The idea is to take quarks seriously as elementary particles, and to intro-

duce a collection of Dirac spinor fields to describe them.

ψ =

 u

d

s


Here ψ is a 3-component vector in flavor space; each entry in ψ is a 4-

component Dirac spinor. Although we don’t know the full Lagrangian for

the strong interactions, we’d certainly expect it to include kinetic terms for

the quarks.

Lstrong = Lkinetic + · · · Lkinetic = ψ̄iγµ∂µψ

The quark kinetic terms are invariant under SU(3) transformations ψ →
Uψ. We’re going to assume that all terms in Lstrong have this symmetry.

Now let’s consider some possible SU(3) breaking terms. One fairly obvious

possibility is to introduce mass terms for the quarks.†

LSU(3)−breaking = Lmass + · · ·

† In the old days people took the strong interactions to be exactly SU(3) invariant, as we did
above. They regarded mass terms as separate SU(3)-breaking terms in the Lagrangian. These
days one tends to think of quark masses as part of the strong interactions, and regard Lmass

as an SU(3)-violating part of the strong interactions.
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Lmass = −ψ̄Mψ M =

 mu 0 0

0 md 0

0 0 ms


These mass terms are, in general, not SU(3)-invariant. Rather the pattern

of SU(3) breaking depends on the quark masses. The discussion is a bit

simpler if we include the symmetry of multiplying ψ by an overall phase,

that is, if we consider ψ → Uψ with U ∈ U(3).

• mu = md = ms ⇒ U(3) is a valid symmetry

• mu = md 6= ms ⇒ U(3) broken to U(2)× U(1)

• mu, md, ms all distinct ⇒ U(3) broken to U(1)3

In the first case we’d have a flavor SU(3) symmetry plus an additional

U(1) corresponding to baryon number. In the second (most physical) case

we’d have an isospin SU(2) symmetry acting on
(
u
d

)
plus two additional

U(1)’s which correspond to (linear combinations of) baryon number and

strangeness. In the third case we’d have three U(1) symmetries correspond-

ing to upness, downness and strangeness.

One can say this in a slightly fancier way: the SU(3) breaking pattern is

determined by the eigenvalues of the quark mass matrix. To see this suppose

we started with a general mass matrix M that isn’t necessarily diagonal. M

has to be Hermitian for the Lagrangian to be real, so we can write

M = U

 mu 0 0

0 md 0

0 0 ms

U † mu ≤ md ≤ ms

for some U ∈ SU(3). Then an SU(3) transformation of the quark fields

ψ → Uψ will leave Lstrong invariant and will bring the quark mass matrix to

a diagonal form. But having chosen to diagonalize the mass matrix in this

way, one is no longer free to make SU(3) transformations with off-diagonal

entries unless some of the eigenvalues of M happen to coincide.

In the real world isospin SU(2) is a much better symmetry than flavor

SU(3). It’s tempting to try to understand this as a consequence of having

mu ≈ md � ms. How well does this work? Let’s look at the spin-3/2 baryon

decuplet. Recall that this has the isospin / strangeness decomposition



20 Flavor SU(3) and the eightfold way

I = 3
2 S = 0


∆++ = uuu

∆+ = uud

∆0 = udd

∆− = ddd


I = 1 S = −1

 Σ∗+ = uus

Σ∗0 = uds

Σ∗− = dds


I = 1

2 S = −2

(
Ξ∗0 = uss

Ξ∗− = dss

)
I = 0 S = −3

(
Ω− = sss

)
Denoting

m0 = (common mass arising from strong interactions)

mu ≈ md ≡ mu,d

we’d predict

m∆ = m0 + 3mu,d

mΣ∗ = m0 + 2mu,d +ms

mΞ∗ = m0 +mu,d + 2ms

mΩ = m0 + 3ms

Although we can’t calculate m0, there is a prediction we can make: mass

splittings between successive rows in the table should roughly equal, given

by ms −mu,d. Indeed

mΣ∗ −m∆ = 155 MeV

mΞ∗ −mΣ∗ = 148 MeV

mΩ −mΞ∗ = 137 MeV

(equal to within roughly ±5 %). This suggests that most SU(3) breaking is

indeed due to the strange quark mass.†
One comment: you might think you could incorporate the charm quark

into this scheme by extending Gell-Mann’s SU(3) to an SU(4) flavor sym-

metry. In principle this is possible, but in practice it’s not useful: the charm

† Note that the mass splittings originate from the traceless part of the mass matrix, which
transforms in the 8 of SU(3). To be fair, any term in the Hamiltonian that transforms like −1 0 0

0 −1 0
0 0 2

 ∈ 8 will give rise to the observed pattern of mass splittings, so really what

we’ve shown is that quark masses are a natural source for such a term.
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quark mass is so large that it can’t be treated as a small perturbation of the

strong interactions.

2.6 Multiplet mixing

At this point you might think that SU(3) completely accounts for the spec-

trum of hadrons. To partially dispel this notion let’s look at the light vector

(spin-1) mesons, which come in an isotriplet (ρ+, ρ0, ρ−), two isodoublets

(K∗+,K∗0), (K̄∗0,K∗−) and two isosinglets ω, φ.

At first sight everything is fine. We’d expect to find the SU(3) quantum

numbers 3 ⊗ 3̄ = 8 ⊕ 1, or in terms of isospin and strangeness 30 ⊕ 21 ⊕
2−1 ⊕ 10 ⊕ 10. It’s tempting to assign the flavor wavefunctions

ρ+, ρ0, ρ− = ud̄,
1√
2

(dd̄− uū), −dū

K∗+, K∗0 = us̄, ds̄

K̄∗0, K∗− = sd̄, −sū
ω =

1√
6

(uū+ dd̄− 2ss̄) (2.1)

φ =
1√
3

(uū+ dd̄+ ss̄)

Here we’re identifying the ω with the I = 0 state in the octet and taking

φ to be an SU(3) singlet. Given our model for SU(3) breaking by quark

masses we’d expect

mρ ≈ m8 + 2mu,d

mK∗ ≈ m8 +mu,d +ms

mω ≈ m8 +
1

3
· 2mu,d +

2

3
· 2ms

mφ ≈ m1 +
2

3
· 2mu,d +

1

3
· 2ms

Here m8 (m1) is the contribution to the octet (singlet) mass arising from

strong interactions. We’ve used the fact that according to (2.1) the ω, for

example, spends 1/3 of its time as a uū or dd̄ pair and the other 2/3 as

an ss̄ pair. It follows from these equations that mω = 4
3mK∗ − 1

3mρ, but

this prediction doesn’t fit the data: mω = 783 MeV while 4
3mK∗ − 1

3mρ =

931 MeV.

Rather than give up on SU(3), Sakurai pointed out that – due to SU(3)

breaking – states in the octet and singlet can mix. In particular we should
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allow for mixing between the two isosinglet states (isospin is a good enough

symmetry that multiplets with different isospins don’t seem to mix):(
|ω〉
|φ〉

)
=

(
cos θ sin θ

− sin θ cos θ

)(
|8〉
|1〉

)
Here θ is a mixing angle which relates the mass eigenstates |ω〉, |φ〉 to the

states with definite SU(3) quantum numbers introduced above:

|8〉 ≡ 1√
6

(|uū〉+ |dd̄〉 − 2|ss̄〉)

|1〉 ≡ 1√
3

(|uū〉+ |dd̄〉+ |ss̄〉)

The mass we calculated above can be identified with the expectation value of

the Hamiltonian in the octet state, 〈8|H|8〉 = 931 MeV. On the other hand

〈8|H|8〉 = (cos θ〈ω| − sin θ〈φ|)H(cos θ|ω〉− sin θ|φ〉) = mω cos2 θ+mφ sin2 θ.

This allows us to calculate the mixing angle

sin θ =

√
〈8|H|8〉 −mω

mφ −mω
=

√
931 MeV − 783 MeV

1019 MeV − 783 MeV
= 0.79

which fixes the flavor wavefunctions

|ω〉 = 0.999
1√
2

(|uū〉+ |dd̄〉)− 0.04|ss̄〉

|φ〉 = 0.999|ss̄〉+ 0.04
1√
2

(|uū〉+ |dd̄〉) .

The ω has very little strange quark content, while φ is almost pure ss̄. When

combined with the OZI rule† this explains why the φ decays predominantly

to strange particles, unlike the ω which decays primarily to pions:

φ→ K+K−, K0K̄0 83% branching ratio

ω → π+π−π0 89% branching ratio

It also explains why the φ lives longer than the ω, even though there’s more

phase space available for its decay:

φ lifetime 1.5× 10−22 sec

ω lifetime 0.8× 10−22 sec

I hope this illustrates some of the limitations of flavor SU(3). Along these

lines it’s worth mentioning that the spectrum of light scalar (as opposed to

† see Cheng & Li p. 121
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pseudoscalar) mesons is quite poorly understood, both theoretically and

experimentally. One recent attempt at clarification is hep-ph/0204205.

References

Cheng & Li is pretty good. For an introduction to group theory see section

4.1. Tensor methods are developed in section 4.3 and applied to the hadron

spectrum in section 4.4. For a more elementary discussion see sections 5.8

and 5.9 of Griffiths. Symmetry breaking by quark masses is discussed by

Cheng & Li on p. 119; ω /φ mixing is on p. 120. For a classic treatment of

the whole subject see Sidney Coleman, Aspects of symmetry, chapter 1.

Exercises

2.1 Casimir operator for SU(2)

A symmetric tensor with n indices provides a representation of

SU(2) with spin s = n/2. In this representation the SU(2) genera-

tors can be taken to be

Ji =
1

2
σi ⊗ 11⊗ · · · ⊗ 11 + · · ·+ 11⊗ · · · ⊗ 11⊗ 1

2
σi

where σi are the Pauli matrices. (There are n terms in this expres-

sion; in the kth term the Pauli matrices act on the kth index of the

tensor.) The SU(2) Casimir operator is J2 =
∑

i JiJi. Show that

J2 has the expected eigenvalue in this representation.

2.2 Flavor wavefunctions for the baryon octet

The baryon octet can be represented as a 3-index tensor Bijk =

T ilε
ljk where T il is traceless. For example, in a basis u =

 1

0

0

,

d =

 0

1

0

, s =

 0

0

1

 , the matrix T =

 0 0 1

0 0 0

0 0 0

 gives the

flavor wavefunction of a proton u(ud − du). Work out the flavor

wavefunctions of the remaining members of the baryon octet. The

hard part is getting the Σ0 and Λ right; you’ll need to take linear

combinations which have the right isospin.
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2.3 Combining flavor + spin wavefunctions for the baryon octet

You might object to the octet wavefunctions worked out in prob-

lem 2.2 on the grounds that they don’t respect Fermi statistics. For

spin-1/2 baryons we can represent the spin of the baryon using a

vector va a = 1, 2 which transforms in the 2 of the SU(2) angular

momentum group.

(i) Write down a 3-index tensor that gives the spin wavefunction for

the (spin-1/2) quarks that make up the baryon. (va is the analog

of T il in problem 2.2. I’m asking you to find the analog of Bijk.)

(ii) Show how to combine your flavor and spin wavefunctions to

make a state that is totally symmetric under exchange of any two

quarks. It has to be totally symmetric so that, when combined

with a totally antisymmetric color wavefunction, we get something

that respects Fermi statistics.

(iii) Suppose the quarks have no orbital angular momentum (as is

usually the case in the ground state). Can you make an octet of

baryons with spin 3/2?

2.4 Mass splittings in the baryon octet

In class we discussed a model for SU(3) breaking based on non-

degenerate quark masses. Use this model to predict

mΛ ≈ mΣ ≈
mΞ +mN

2

where mN is the nucleon mass. To what accuracy are these relations

actually satisfied?

2.5 Electromagnetic decays of the Σ∗

The up and down quarks have different electric charges, so electro-

magnetic interactions violate the isospin SU(2) subgroup of SU(3).

However the down and strange quarks have identical electric charges.

This means that electromagnetism respects a different SU(2) sub-

group of SU(3), sometimes called U -spin, that acts on the quarks

as  u

d

s

→ (
1 0

0 U

) u

d

s

 .

Use this to show that the electromagnetic decay Σ∗− → Σ−γ is

forbidden but that Σ∗+ → Σ+γ is allowed.
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3.1 Quark properties

Quarks must have some unusual properties, if you take them seriously as

elementary particles.

First, isolated quarks have never been observed. To patch this up we’ll

simply postulate ‘quark confinement’: the idea that quarks are always per-

manently bound inside mesons or baryons.

Second, quarks must have unusual (fractional!) electric charges.

∆++ ∼ uuu ⇒ Qu = 2/3

∆− ∼ ddd ⇒ Qd = −1/3

Ω− ∼ sss ⇒ Qs = −1/3

There’s nothing wrong with fractional charges, of course – it’s just that

they’re a little unexpected.

Third, quarks are presumably spin-1/2 Dirac fermions. To see this note

that baryons have half-integer spins and are supposed to be qqq bound states.

The simplest possibility is to imagine that the quarks themselves carry spin

1/2. Then by adding the spin angular momenta of the quarks we can make

mesons with spins
1

2
⊗ 1

2
= 1⊕ 0

baryons with spins
1

2
⊗ 1

2
⊗ 1

2
=

3

2
⊕ 1

2
⊕ 1

2

You can make hadrons with even larger spins if you give the quarks some

orbital angular momentum.

At this point there’s a puzzle with Fermi statistics. Consider the combined

25
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flavor and spin wavefunction for a ∆++ baryon with spin sz = 3/2.

|∆++ with sz = 3/2〉 = |u ↑, u ↑, u ↑〉

The state is symmetric under exchange of any two quarks, in violation of

Fermi statistics.

To rescue the quark model Nambu proposed that quarks carry an ad-

ditional ‘color’ quantum number, associated with a new SU(3) symmetry

group denoted SU(3)color. This is in addition to the flavor and spin labels

we’ve already talked about. That is, a basis of quark states can be labeled

by |flavor , color , spin〉. Here the flavor label runs over the values u, d, s and

provides a representation of the 3 of SU(3)flavor. The color label runs over

the values r, g, b and provides a representation of the 3 of SU(3)color. Finally

the spin label runs over the values ↑, ↓ and provides a representation of the

2 of the SU(2) angular momentum group. One sometimes says that quarks

are in the (3,3,2) representation of the SU(3)flavor×SU(3)color×SU(2)spin

symmetry group.†
Strangely enough, color has never been observed directly in the lab. What

I mean by this is that (for example) hadrons can be grouped into multiplets

that are in non-trivial representations of SU(3)flavor. But there are no de-

generacies in the hadron spectrum associated with SU(3)color: all observed

particles are color singlets. We’ll elevate this observation to the status of

a principle, and postulate that all hadrons are invariant under SU(3)color

transformations. This implies quark confinement: since quarks are in the 3

of SU(3)color they can’t appear in isolation. What’s nice is that we can make

color-singlet mesons and baryons. Denoting quark color by a 3-component

vector za we can make

color-singlet baryon wavefunctions εabc

color-singlet meson wavefunctions δab

So why introduce color at all? It provides a way to restore Fermi statistics.

For example, for the ∆++ baryon, the color wavefunction is totally antisym-

metric. So when we combine it with the totally symmetric flavor and spin

wavefunction given above we get a state that respects Fermi statistics.

† It gets confusing, but try to keep in mind that SU(3)flavor and SU(3)color are completely
separate symmetries that have nothing to do with one another.
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3.2 Evidence for quarks

This may be starting to seem very contrived. But in fact there’s very con-

crete evidence that quarks carry the spin, charge and color quantum numbers

we’ve assigned.

3.2.1 Quark spin

Perhaps the most direct evidence that quarks carry spin 1/2 comes from

the process e+e− → two jets. This can be viewed as a two-step process:

an electromagnetic interaction e+e− → qq̄, followed by strong interactions

which convert the q and q̄ into jets of (color-singlet) hadrons.

jet

+
e

e

q

q
_ _

jet

Assuming the quark and antiquark don’t interact significantly in the final

state, each jet carries the full momentum of its parent quark or antiquark.

Thus by measuring the angular distribution of jets you can directly deter-

mine the angular distribution of qq̄ pairs produced in the process e+e− → qq̄.

For spin-1/2 quarks this is governed by the differential cross section†

dσ

dΩ
=
Q2
eQ

2
qe

4

64π2s

(
1 + cos2 θ

)
. (3.1)

Here we’re working in the center of mass frame and neglecting the electron

and quark masses. Qe is the electron charge and Qq is the quark charge,

both measured in units of e ≡
√

4πα, while s = (p1 + p2)2 is the square of

the total center-of-mass energy and θ is the c.m. scattering angle (measured

with respect to the beam direction).

As you’ll show in problem 4.1, this angular distribution is characteristic of

having spin-1/2 particles in the final state. The data indicates that quarks

indeed carry spin 1/2: Hanson et. al., Phys. Rev. Lett. 35 (1975) 1609.

† For example see Peskin & Schroeder section 5.1. We’ll discuss this in detail in the next chapter.
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3.2.2 Quark charge

One can measure (ratios of) quark charges using the so-called Drell-Yan

process

π± deuteron → µ+µ− anything .

Recall that π+ ∼ ud̄ and π− ∼ dū, while the deuteron (if you think of it

as a proton plus neutron) has quark content uuuddd. We can regard the

Drell-Yan process as an elementary electromagnetic interaction qq̄ → µ+µ−

together with lots of strong interactions. In cartoon form the interactions

are

_

ddd

uuu

uuu

ddd

_
µ

µ

_

+

D

_
π

d

ud

u

µ

µ

_

+

π

D

+

At high energies the electromagnetic process has a center-of-mass cross

section

σ =
Q2
qQ

2
µe

4

12πs

that follows from integrating (3.1) over angles. You might worry that the

whole process is dominated by strong interactions. What saves us is the fact

that the deuteron is an isospin singlet.† This means that – since isospin is a

symmetry of the strong interactions – strong interactions can’t distinguish

between the initial states π+D and π−D. They only contribute an overall

factor to the two cross sections, which cancels out when we take the ratio.

Thus we can predict

σ(π+D → µ+µ−X)

σ(π−D → µ+µ−X)
≈ Q2

d

Q2
u

=
(−1/3)2

(2/3)2
=

1

4
.

This fits the data (actually taken with an isoscalar 12C target) pretty well.

See Hogan et. al., Phys. Rev. Lett. 42 (1979) 948.

† It’s a proton-neutron bound state with no orbital angular momentum, isospin I = 0, and
regular spin J = 1.
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From Hogan et. al., PRL 42 (1979) 948

3.2.3 Quark color

A particularly elegant piece of evidence for quark color comes from the decay

π0 → γγ, as you’ll see in problem 13.1. But for now a nice quantity to study

is the cross-section ratio

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
.

The initial step in the reaction e+e− → hadrons is the purely electrodynamic

process e+e− → qq̄, followed by strong interactions that turn the q and q̄

into a collection of hadrons. This “hadronization” takes place with unit

probability, so we don’t need to worry about it, and we have
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Σ
e q

q

+

e
_

2

2

_
e +

e
_

µ

µ

_

+

R =
quarks

Here we’ve taken the phase space in the numerator and denominator to

be the same, which is valid for quark and muon masses that are negligible

compared to Ecm. The diagrams in the numerator and denominator are es-

sentially identical, except that in the numerator the diagram is proportional

to QeQq while in the denominator it’s proportional to QeQµ. Thus

R =
∑

quarks

Q2
quark

where the sum is over quarks with mass <
√
s/2. If we have enough energy

to produce strange quarks we’d expect

R = 3
[

(2/3)2︸ ︷︷ ︸
up

+ (−1/3)2︸ ︷︷ ︸
down

+ (−1/3)2︸ ︷︷ ︸
strange

]
= 2

where the factor of 3 arises from the sum over quark colors. For Ecm between

roughly 1.5 GeV and 3 GeV the data shows that R is indeed close to 2.

However at larger energies R increases. This is evidence for heavy flavors of

quarks.

charm mc = 1.3 GeV Qc = 2/3

bottom mb = 4.2 GeV Qb = −1/3

top mt = 172 GeV Qt = 2/3

Above the bottom threshold (but below the top) we’d predict

R = 3
[
(2/3)2 + (−1/3)2 + (−1/3)2 + (2/3)2 + (−1/3)2

]
= 11/3

in pretty good agreement with the data.

References

Evidence for the existence of quarks is given in chapter 1 of Quigg, under

the heading “why we believe in quarks.”
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010001-6 39. Plots of cross sections and related quantities

σ andR in e+e− Collisions
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Figure 39.6, Figure 39.7: World data on the total cross section of e+e− → hadrons and the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−,
QED simple pole). The curves are an educative guide. The solid curves are the 3-loop pQCD predictions for σ(e+e− → hadrons) and the
R ratio, respectively [see our Review on Quantum chromodynamics, Eq. (9.12)] or, for more details, K.G. Chetyrkin et al., Nucl. Phys.
B586, 56 (2000), Eqs. (1)–(3)). Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ (nS), n = 1..4 are also shown. Note: The experimental
shapes of these resonances are dominated by the machine energy spread and are not shown. The dashed curves are the naive quark parton
model predictions for σ and R. The full list of references, as well as the details of R ratio extraction from the original data, can be
found in O.V. Zenin et al., hep-ph/0110176 (to be published in J. Phys. G). Corresponding computer-readable data files are available
at http://wwwppds.ihep.su/≈zenin o/contents plots.html. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups,
November 2001.)
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Exercises

3.1 Decays of the W and τ

The W− boson decays to a “weak doublet” pair of fermions, mean-

ing either e−ν̄e, µ−ν̄µ, τ−ν̄τ , ūd, c̄s, or in principle t̄b.

(i) Suppose the amplitude for W− decay is the same for all fermion

pairs. Only kinematically allowed decays are possible, but aside

from that you can neglect differences in phase space due to fermion

masses. Predict the branching ratios for the decays

W− → e−ν̄e
W− → µ−ν̄µ
W− → τ−ν̄τ
W− → hadrons

(ii) The τ− lepton decays by τ− → W−ντ , followed by W− decay.

Predict the branching ratios for the decays

τ− → ντ e
−ν̄e

τ− → ντ µ
−ν̄µ

τ− → ντ hadrons

(iii) How did you do, compared to the particle data book? What

would happen if you didn’t take color into account?



4

Chiral spinors and helicity amplitudes Physics 85200

January 8, 2015

To be concrete let me focus on the process e+e− → µ+µ−.

_

2
p

3

p
1

p
1

p
2

+

µ+

_
µe+

p
4

e

p

Evaluating this diagram is a straightforward exercise in Feynmanology, as

reviewed in appendix A. The amplitude is

−iM = v̄(p2)(−ieQγµ)u(p1)
−igµν

(p1 + p2)2
ū(p3)(−ieQγν)v(p4)

where Q = −1 for the electron and muon. In the center of mass frame the

corresponding differential cross section is

dσ

dΩ
=

e4

64π2s

√
s− 4m2

µ

s− 4m2
e

(
1 + (1− 4m2

e

s
)(1−

4m2
µ

s
) cos2 θ +

4(m2
e +m2

µ)

s

)
.

Here s = (p1 + p2)2 is the square of the total center-of-mass energy and θ

is the c.m. scattering angle (measured with respect to the beam direction).

This result is clearly something of a mess, however note that things simplify

quite a bit in the high-energy (or equivalently massless) limit
√
s� me, mµ.

In this limit we have

dσ

dΩ
=

e4

64π2s

(
1 + cos2 θ

)
.
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One of our main goals in this section is to understand the origin of this

simplification.

4.1 Chiral spinors

I’ll start with some facts about Dirac spinors. Recall that a Dirac spinor

ψD is a 4-component object. Under a Lorentz transform

ψD → e−i(
~θ·J+~φ·K)ψD . (4.1)

Here we’re performing a rotation through an angle |~θ| about the direction

θ̂, and we’re boosting with rapidity |~φ| in the direction φ̂. The rotation

generators J and boost generators K are given in terms of Pauli matrices

by

J =

(
~σ/2 0

0 ~σ/2

)
K =

(
−i~σ/2 0

0 i~σ/2

)
Here I’m working the the “chiral basis” where the Dirac matrices take the

form

γ0 =

(
0 11
11 0

)
γi =

(
0 σi

−σi 0

)
What’s nice about the chiral basis is that the Lorentz generators are block-

diagonal. This makes it manifest that Dirac spinors are a reducible repre-

sentation of the Lorentz group. The irreducible pieces of ψD are obtained

by decomposing

ψD =

(
ψL
ψR

)
into left- and right-handed “chiral spinors” ψL, ψR.

In the chiral basis

γ5 ≡ iγ0γ1γ2γ3 =

(
−11 0

0 11

)
.

We can use this to define projection operators

PL =
1− γ5

2
=

(
11 0

0 0

)
PR =

1 + γ5

2
=

(
0 0

0 11

)
which pick out the left- and right-handed pieces of a Dirac spinor.

PLψD =

(
ψL
0

)
PRψD =

(
0

ψR

)
.
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To see why this decomposition is useful, let’s express the QED Lagrangian

in terms of chiral spinors.

LQED = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν

Here Dµ = ∂µ + ieQAµ is the covariant derivative. In the chiral basis we

have

ψ̄ (iγµDµ −m)ψ

=
(
ψ†L ψ†R

)( 0 11
11 0

)(
−m iD0 + i ~D · ~σ

iD0 − i ~D · ~σ −m

)(
ψL
ψR

)

=
(
ψ†L ψ†R

)( iD0 − i ~D · ~σ −m
−m iD0 + i ~D · ~σ

)(
ψL
ψR

)
= iψ†L

(
D0 − ~D · ~σ

)
ψL + iψ†R

(
D0 + ~D · ~σ

)
ψR −m

(
ψ†LψR + ψ†RψL

)
The important thing to note is that the mass term couples ψL to ψR. But

in the massless limit ψL and ψR behave as two independent fields. They’re

both coupled to the electromagnetic field, of course, through the interaction

Hamiltonian

Hint = −Lint = eQ
[
ψ†L(A0 −A · ~σ)ψL + ψ†R(A0 + A · ~σ)ψR

]
. (4.2)

Note that there are no ψLψRA couplings in the Hamiltonian. This will lead

to simplifications in high-energy scattering amplitudes.

To see the physical interpretation of these chiral spinors recall the plane

wave solutions to the Dirac equation worked out in Peskin & Schroeder.

We’re interested in describing states with definite

helicity ≡ component of spin along direction of motion .

To describe these states let p̂ be a unit vector in the direction of motion.

Start by finding the (orthonormal) eigenvectors of the operator p̂ · ~σ:

(p̂ · ~σ) ξ± = ±ξ± |ξ+|2 = |ξ−|2 = 1 .

Then you can construct Dirac spinors describing states with definite helic-

ity.†
† It may seem counterintuitive that vR is constructed from ξ−, and vL from ξ+. To under-

stand this you can either go through some intellectual contortions with hole theory, or more
straightforwardly you can read it off from the angular momentum operator of a quantized Dirac
field.
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uR(p) =

( √
E − |p| ξ+√
E + |p| ξ+

)
right-handed particle (helicity +~/2)

uL(p) =

( √
E + |p| ξ−√
E − |p| ξ−

)
left-handed particle (helicity −~/2)

vR(p) =

( √
E + |p| ξ−

−
√
E − |p| ξ−

)
right-handed antiparticle (helicity +~/2)

vL(p) =

( √
E − |p| ξ+

−
√
E + |p| ξ+

)
left-handed antiparticle (helicity −~/2)

These spinors are kind of messy. But in the massless limit E → |p| and

things simplify a lot:

uR(p)→
(

0√
2E ξ+

)
pure ψR

uL(p)→
( √

2E ξ−

0

)
pure ψL

vR(p)→
( √

2E ξ−

0

)
pure ψL

vL(p)→
(

0

−
√

2E ξ+

)
pure ψR

Thus in the massless limit

ψL describes a left-handed particle and its right-handed antiparticle

ψR describes a right-handed particle and its left-handed antiparticle

Warning: when people talk about left- or right-handed particles they’re

referring to helicity ≡ component of spin along the direction of motion.

When people talk about left- or right-handed spinors they’re referring to

chirality ≡ behavior under Lorentz transforms. In general these are very

different notions although, as we’ve seen, they get tied together in the mass-

less limit.
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4.2 Helicity amplitudes

Let’s look more closely at the high-energy behavior of e+e− → µ+µ−. At

high energies the electron and muon masses can be neglected, which makes

it useful to work in terms of chiral spinors. The interaction Hamiltonian

looks like two copies of (4.2), one for the electron and one for the muon.

Hint only couples two spinors of the same chirality to the gauge field, so out

of the 16 possible scattering amplitudes between states of definite helicity

only four are non-zero:

e+
Le
−
R → µ+

Lµ
−
R e+

Le
−
R → µ+

Rµ
−
L e+

Re
−
L → µ+

Lµ
−
R e+

Re
−
L → µ+

Rµ
−
L

Here I’m denoting the helicity of the particles with subscripts L, R. For

example, both e+
L and e−R sit inside a right-handed spinor. Ditto for µ+

L and

µ−R. In general this is known as “helicity conservation at high energies” (see

Halzen & Martin section 6.6).

Let’s study the particular spin-polarized process e+
Le
−
R → µ+

Lµ
−
R.

L

2
p

3

p
1

p
1

p
2

+

µ+

_
µe+

e
_

p
4

L

R

R

p

The amplitude is

−iM = v̄L(p2)(−ieQγµ)uR(p1)
−igµν

(p1 + p2)2
ūR(p3)(−ieQγν)vL(p4) .

At this point it’s convenient to fix the kinematics (spatial momenta indicated

by large arrows, spins indicated by small arrows)
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θ
e+

L

µ
L
+

e
R

_

µ
_

R

p
3

p
4

2
p

p
1

Then for the incoming e+e− we have (I’m only interested in the angular

dependence, so I’m not going to worry about normalizing the spinors)

p1 = (E, 0, 0, E) p2 = (E, 0, 0,−E)

uR(p1) =


0

0

1

0

 vL(p2) =


0

0

0

1


Then the ‘electron current’ part of the diagram is

v̄L(p2)(−ieQγµ)uR(p1)

∼ v†L(p2)

(
0 11
11 0

)( (
0 11
11 0

)
;

(
0 σi

−σi 0

) )
uR(p1)

= v†L(p2)

( (
11 0

0 11

)
;

(
−σi 0

0 σi

) )
uR(p1)

= (0, 1, i, 0) (4.3)

To get the ‘muon current’ part of the diagram, first consider scattering at

θ = 0, for which

p3 = (E, 0, 0, E) p4 = (E, 0, 0,−E)

uR(p3) =


0

0

1

0

 vL(p4) =


0

0

0

1


⇒ ūR(p3)(−ieQγµ)vL(p4)
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∼ u†R(p3)

( (
11 0

0 11

)
;

(
−σi 0

0 σi

) )
vL(p4)

= (0, 1,−i, 0)

To get the result for general θ we just need to rotate this 4-vector through

an angle θ about (say) the y-axis:

ūR(p3)(−ieQγµ)vL(p4) ∼ (0, cos θ,−i, sin θ) .
The helicity amplitude goes like the dot product of the two currents:

M(e+
Le
−
R → µ+

Lµ
−
R) ∼ (0, 1, i, 0) · (0, cos θ,−i, sin θ) = −(1 + cos θ) .

This result is a beautifully simple example of quantum measurement at

work. The electron current describes an initial state with one unit of angular

momentum polarized in the +z direction |J = 1, Jz = 1〉. To verify this

statement, just look at how the 4-vector (4.3) transforms under a rotation

about the z axis. The (complex conjugate of the) muon current describes

a final state which also has one unit of angular momentum, but polarized

in the direction of the outgoing muon: |J = 1, Jµ− = 1〉. The angular

dependence of the amplitude is given by the inner product of these two

angular momentum eigenstates.† As a reality check, note that the amplitude

vanishes when θ = π (the amplitude for an eigenstate with Jz = +1 to be

found in a state with Jz = −1 vanishes).

The other helicity amplitudes go through in pretty much the same way.

The only difference is that for a process like LR → RL it’s scattering at

θ = 0 that’s prohibited; this shows up as a (1− cos θ) dependence. Finally,

the cross sections go like |M|2, so(
dσ

dΩ

)
LR→LR

=

(
dσ

dΩ

)
RL→RL

∼ (1 + cos θ)2(
dσ

dΩ

)
LR→RL

=

(
dσ

dΩ

)
RL→LR

∼ (1− cos θ)2

Summing over final polarizations and averaging over initial polarizations

gives (
dσ

dΩ

)
unpolarized

∼ 1 + cos2 θ .

Although spin-averaged amplitudes are usually easier to compute, especially

for finite fermion masses, it’s often easier to interpret helicity amplitudes.

† This sort of analysis is quite general. See appendix B.
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References

Plane wave solutions to the Dirac equation are worked out in Peskin &

Schroeder: for the classical theory see p. 48, for the (slightly confusing)

quantum interpretation see p. 61, for a summary of the results see appendix

A.2. Chiral spinors (also known as Weyl spinors) are discussed in section

3.2 of Peskin & Schroeder, while helicity amplitudes are covered in section

5.2.

Exercises

4.1 Quark spin and jet production

Two-jet production in e+e− collisions can be understood as a tree-

level QED-like process e+e− → γ → qq̄ followed by hadronization

of the quark and antiquark. Assuming the quark and antiquark

don’t interact significantly, each jet carries the full momentum of its

parent quark or antiquark. The distribution of jets with respect to

the scattering angle θ carries information about the spin of a quark.

References: there’s some discussion in Cheng & Li p. 215-216, and

for a nice picture see p. 9 in Quigg.

(i) Suppose the quark is a spin-1/2 Dirac fermion with charge Q and

mass M . What is the center of mass differential cross section for

the process e+e− → qq̄? You should average over initial spins and

sum over final spins, also you should keep track of the dependence

on both the electron and quark masses.

(ii) Now suppose the quark is a spinless particle that can be modeled

as a complex scalar field with charge Q and mass M . Re-evaluate

the center of mass differential cross-section for e+e− → qq̄. You

should average over the initial e+e− spins. The Feynman rules are

in appendix A.

(iii) In the high-energy limit the electron and quark masses are neg-

ligible and the angular distribution simplifies. For spin-1/2 quarks

there’s a nice explanation for the angular distribution at high ener-

gies: we talked about it in class, or see Peskin & Schroeder sect. 5.2

or Halzen & Martin sect. 6.6. What’s the analogous explanation

for the high energy angular distribution of spinless quarks?

(iv) In e+e− collisions at Ecm = 7.4 GeV the jet-axis angular dis-

tribution was found to be proportional to 1 + (0.78 ± 0.12) cos2 θ

[Phys. Rev. Lett. 35, 1609 (1975)]. What’s the spin of a quark?
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5.1 Symmetries and conservation laws

When discussing symmetries it’s convenient to use the language of La-

grangian mechanics. The prototype example I’ll have in mind is a scalar

field φ(t,x) with potential energy V (φ). The action is

S[φ] =

∫
d4xL(φ, ∂φ) L =

1

2
∂µφ∂

µφ− V (φ)

Classical trajectories correspond to stationary points of the action.

vary φ→ φ+ δφ

δS = 0 to first order in δφ
⇔ φ is a classical trajectory

With suitable boundary conditions on δφ this variational principle is equiv-

alent to the Euler-Lagrange equations

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 .

To see this one computes

δS =

∫
d4x

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ

)
=

∫
d4x

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
∂µδφ

)
=

∫
d4x δφ

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
+ surface terms

With suitable boundary conditions we can drop the surface terms, in which

case δS vanishes for any δφ iff the Euler-Lagrange equations are satisfied.

41
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Now let’s discuss continuous internal symmetries, which are transforma-

tions of the fields that

• depend on one or more continuous parameters,

• are “internal,” in the sense that the transformation can depend on φ but

not on ∂µφ,

• are “symmetries,” in the sense that they leave the Lagrangian invariant.

That is, we consider continuous transformations of the fields

φ(x)→ φ′(x) = φ′(φ(x)) (5.1)

such that

L(φ, ∂φ) = L(φ′, ∂φ′) .

The notation in (5.1) means that the new value of the field at the point

x only depends on the old value of the field at the point x – it doesn’t

depend on the old value of the field at any other point. Equivalently the

transformation can depend on φ but not on ∂µφ.

One consequence of this definition is that if φ(x) satisfies the equations of

motion, then so does φ′(x). In other words a symmetry maps one solution

to the equations of motion into another solution.†
Another consequence is Noether’s theorem, that symmetries imply con-

servation laws. Given an infinitesimal internal symmetry transformation

φ→ φ+ δφ the current

jµ =
∂L

∂(∂µφ)
δφ (5.2)

is conserved. That is, the equations of motion for φ imply that ∂µj
µ = 0.

Proof: Suppose φ satisfies the equations of motion, and consider an in-

finitesimal internal symmetry transformation φ → φ + δφ. Let’s compute

δL in two ways. On the one hand δL = 0 by the definition of an internal

symmetry. On the other hand

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ∂µφ .

† Proof: the Lagrangian is invariant so S[φ] = S[φ′]. Varying with respect to φ(x) the chain rule

gives δS
δφ(x)

=
∫
y

δS
δφ′(y)

δφ′(y)
δφ(x)

. Assuming the Jacobian δφ′

δφ
is non-singular we have δS

δφ
= 0 iff

δS
δφ′ = 0.
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If we use the Euler-Lagrange equations this becomes

δL = ∂µ
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ)

δ∂µφ

= ∂µ

(
∂L

∂(∂µφ)
δφ

)
Comparing the two expressions for δL we see that jµ = ∂L

∂(∂µφ)δφ is con-

served: the equations of motion for φ imply ∂µj
µ = 0. Q.E.D.

This shows that symmetries⇒ conservation laws. It works the other way

as well: given a conservation law obtained using Noether’s theorem, you can

reconstruct the symmetry it came from. This is best expressed in Hamil-

tonian language. Given a conserved current jµ one has the corresponding

conserved charge

Q =

∫
d3x j0(t,x)

(
dQ
dt = 0 so t is arbitrary

)
Q is the generator of the symmetry in the sense that

i [Q,φ(t,x)] = δφ(t,x) .

(This is a quantum commutator, but if you like Poisson brackets you can

write a corresponding expression in the classical theory.)

Proof: recall that the canonical momentum

π =
∂L

∂(∂0φ)

obeys the equal-time commutator

i [π(t,x), φ(t,y)] = δ3(x− y)

and note that Q =
∫
d3x j0 =

∫
d3xπδφ satisfies

i[Q,φ(t,x)] = i

∫
d3y [π(t,y)δφ(t,y), φ(t,x)]

= i

∫
d3y [π(t,y), φ(t,x)] δφ(t,y)

= δφ(t,x) .

It’s important for this argument that δφ(t,x) commutes with φ(t,x). This

is valid for internal symmetries, since δφ(x) only depends on φ(x) and φ(x)

commutes with itself.
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5.1.1 Flavor symmetries of the quark model

As an example, consider the quark model we introduced in section 3.1. In

terms of a collection of Dirac spinor fields

ψ =

 u

d

s


we guessed that the strong interaction Lagrangian looked like

Lstrong = ψ̄iγµ∂µψ + · · ·
The quark kinetic terms are invariant under U(3) transformations ψ → Uψ.

If we assume this symmetry extends to all of Lstrong, we can derive the

corresponding conserved currents. Setting U = e−iλ
aTa where the generators

T a are a basis of 3× 3 Hermitian matrices we have†
infinitesimal transformation δψ = −iλaT aψ
∂RLstrong

∂(∂µψ)R
= ψ̄iγµ

∂RLstrong

∂(∂µψ̄)R
= 0

⇒ jµa = ψ̄γµT aψ conserved

Here I’m using the fermionic version of Noether’s theorem, worked out in

problem 5.1. In the last line I stripped off the infinitesimal parameters λa.

As promised, this approach unifies several conservation laws introduced in

chapter 1.

U(3) generator conservation law

 1 0 0

0 1 0

0 0 1

 quark number ( = B/3)

 0 0 0

0 0 0

0 0 −1

 strangeness

(
σi 0

0 0

)
isospin

traceless flavor SU(3)

† There is a subtle point here - what if there were terms involving ∂µψ or ∂µψ̄ hidden in the · · ·
terms in Lstrong? Such terms would modify the currents, but fortunately dimensional analysis
tells you that any such terms can be neglected at low energies.
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5.2 Spontaneous symmetry breaking (classical)

It might seem that we’ve exhausted our discussion of symmetries and their

consequences. But there’s a somewhat surprising phenomenon that can oc-

cur in quantum field theory: the ground state of a quantum field doesn’t

have to be unique. This opens up a new possibility: given some degen-

erate vacua, a symmetry transformation φ → φ′ can leave the Lagrangian

invariant but may act non-trivially on the space of vacua.

This phenomenon is known as spontaneous symmetry breaking. Rather

than give a general discussion, I’ll go through a few examples that illustrate

how it works. In this section the analysis will be mostly classical. In the next

section we’ll explore the consequences of spontaneous symmetry breaking in

the quantum theory.

5.2.1 Breaking a discrete symmetry

As a first example, consider a real scalar field with a φ4 self-interaction.

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 − 1

4
λφ4

The potential energy of the field V (φ) = 1
2µ

2φ2 + 1
4λφ

4. Assuming µ2 > 0

the potential looks like

V(phi)

phi

In this case there is a unique ground state at φ = 0. The Lagrangian is

invariant under a Z2 symmetry that takes φ→ −φ. This symmetry has the

usual consequence: in the quantum theory an n particle state has parity

(−1)n under the symmetry, so the number of φ quanta is conserved mod 2.
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Now let’s consider the same theory but with µ2 < 0. Then the potential

looks like

V(phi)

phi

Now there are two degenerate ground states located at φ = ±
√
−µ2/λ. Note

that the Z2 symmetry exchanges the two ground states. Taking µ2 to be

negative might bother you – does it mean the mass is imaginary? In a way

it does: standard perturbation theory is an expansion about the unstable

point φ = 0, and the imaginary mass reflects the instability.

To see the physical consequences of having µ2 < 0 it’s best to expand the

action about one of the degenerate minima. Just to be definite let’s expand

about the minimum on the right, and set

φ = φ0 + ρ φ0 =
√
−µ2/λ

Here ρ is a new field with the property that it vanishes in the appropriate

ground state. Rewriting the action in terms of ρ

L =
1

2
∂µρ∂

µρ− 1

2
(φ0 + ρ)2 − 1

4
λ (φ0 + ρ)4

Expanding this in powers of ρ there’s a constant term (the value of V at

its minimum) that we can ignore. The term linear in ρ vanishes since we’re

expanding about a minimum. We’re left with

L =
1

2
∂µρ∂

µρ+ µ2ρ2 −
√
−µ2λρ3 − 1

4
λρ4 (5.3)

The curious thing is that, if I just handed you this Lagrangian without

telling you where it came from, you’d say that this is a theory of a real

scalar field with

• a positive (mass)2 given by m2
ρ = −2µ2 > 0
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• cubic and quartic self-couplings described by an interaction Hamiltonian

Hint = (−µ2λ)1/2ρ3 + 1
4λρ

4

• no sign of a Z2 symmetry!

A few comments are in order.

(i) A low-energy observer can only see small fluctuations about one of the

degenerate minima. To such an observer the underlying Z2 symmetry

is not manifest, since it relates small fluctuations about one minimum

to small fluctuations about the other minimum.

(ii) The underlying symmetry is still valid, even if µ2 < 0, and it does

have consequences at low energies. In particular the coefficient of

the cubic term in the potential energy for ρ is not an independent

coupling constant – it’s fixed in terms of λ and m2
ρ. So a low-energy

observer who made very precise measurements of ρ – ρ scattering

could deduce the existence of the other vacuum.

(iii) A more straightforward way to discover the other vacuum is to work

at high enough energies that the field can go over the barrier from

one vacuum to the other.

(iv) Although it’s classically forbidden, in the quantum theory can’t the

field tunnel through the barrier to reach the other vacuum, even

at low energies? The answer is no because, as you’ll show on the

homework, the tunneling probability vanishes for a quantum field in

infinite spatial volume.

This last point is rather significant. In ordinary quantum mechanics states

that are related by a symmetry can mix, and it’s frequently the case that the

ground state is unique and invariant under all symmetries.† But tunneling

between different vacua is forbidden in quantum field theory in the infinite

volume limit. This is what makes spontaneous symmetry breaking possible.

5.2.2 Breaking a continuous symmetry

Now let’s consider a theory with a continuous symmetry. As a simple ex-

ample, let’s take a two-component real scalar field ~φ with

L =
1

2
∂µ~φ · ∂µ~φ−

1

2
µ2|~φ|2 − 1

4
λ|~φ|4 .

† For example the ground state of a particle in a double-well potential is unique, a symmetric
combination of states localized in either well (Sakurai, Modern quantum mechanics, p. 256).
Likewise the ground state of a rigid rotator has no angular momentum. This is not to say that
in quantum mechanics the ground state is always unique. For example the ground state of a
deuterium nucleus has total angular momentum J = 1.
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This theory has an SO(2) symmetry(
φ1

φ2

)
7→
(

cos θ − sin θ

sin θ cos θ

)(
φ1

φ2

)
Noether’s theorem gives the corresponding conserved current

jµ = φ2∂µφ1 − φ1∂µφ2 .

First let’s consider µ2 > 0. In this case there are no surprises. The poten-

tial has a unique minimum at ~φ = 0. The symmetry leaves the ground state

invariant. The symmetry is manifest in the spectrum of small fluctuations

(the particle spectrum): in particular

φ1 and φ2 have the same mass. (5.4)

The conserved charge is also easy to interpret. For spatially homogeneous

fields it’s essentially the angular momentum you’d assign a particle rolling

in the potential V (~φ). Alternatively, if you work in terms of a complex field

Φ = 1√
2
(φ1 + iφ2), then the conserved charge is the net number of Φ quanta.

Now let’s consider µ2 < 0. In this case there’s a circle of degenerate

minima located at |~φ| =
√
−µ2/λ. Under the SO(2) symmetry these vacua

get rotated into each other. To see what’s going on let’s introduce fields

that are adapted to the symmetry, and set

~φ = (σ cos θ, σ sin θ) σ > 0, θ ≈ θ + 2π

In terms of σ and θ the symmetry acts by

σ invariant, θ → θ + const.

and we have

L =
1

2
∂µσ∂

µσ +
1

2
σ2∂µθ∂

µθ − 1

2
µ2σ2 − 1

4
λσ4

When µ2 < 0 the minimum of the potential is at σ =
√
−µ2/λ. To take

this into account we shift

σ =
√
−µ2/λ+ ρ

and find that (up to an additive constant)

L =
1

2
∂µρ∂

µρ+ µ2ρ2 − (−µ2λ)1/2ρ3 − 1

4
λρ4

+
1

2
(−µ2/λ)∂µθ∂

µθ + (−µ2/λ)1/2ρ∂µθ∂
µθ +

1

2
ρ2∂µθ∂

µθ
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The first line is, aside from the restriction ρ > 0, just the theory we en-

countered previously in (5.3): it describes a real scalar field with cubic and

quartic self-couplings. The second line describes a scalar field θ that has

some peculiar-looking couplings to ρ but no mass term. (If you want you

can redefine θ to give it a canonical kinetic term.) If I didn’t tell you where

this Lagrangian came from you’d say that this is a theory with

• two scalar fields, one massive and the other massless

• cubic and quartic interactions between the fields

• no sign of any SO(2) symmetry!

Although there are some parallels with discrete symmetry breaking, there

are also important differences. The main difference is that in the continuous

case a massless scalar field θ appears in the spectrum. It’s easy to understand

why it has to be there. The underlying SO(2) symmetry acts by shifting

θ → θ+ const. The Lagrangian must be invariant under such a shift, which

rules out any possible mass term for θ.

One can make a stronger statement. The shift symmetry tells you that

the potential energy is independent of θ. So the symmetry forbids, not just

a mass term, but any kind of non-derivative interaction for θ. The usual

terminology is that, once all other fields are set equal to their vacuum values,

θ parametrizes a flat direction in field space.

It’s worth saying this again. We have a family of degenerate ground

states labeled by the value of θ. A low-energy observer could, in a localized

region, hope to study a small fluctuation about one of these vacua. Unlike

in the discrete case, a small fluctuation about one vacuum can reach some

of the other “nearby” vacua. This is illustrated in Fig. 5.1. The energy

density of such a fluctuation can be made arbitrarily small – even if the

amplitude of the fluctuation is held fixed – just by making the wavelength

of the fluctuation larger. This property, that the energy density goes to zero

as the wavelength goes to infinity, manifests itself through the presence of a

massless scalar field. These massless fields are known as Goldstone bosons.

Incidentally, suppose we were at such low energies that we couldn’t create

any ρ particles. Then we’d describe the dynamics just in terms of a (rescaled)

Goldstone field θ̃ =
√
−µ2/λ θ that takes values on a circle.

L =
1

2
∂µθ̃∂

µθ̃ θ̃ ≈ θ̃ + 2π(−µ2/λ)1/2

The circle should be thought of as the space of vacua of the theory. This is

known as a low-energy effective action for the Goldstone boson.
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x

y

x

y

Fig. 5.1. A fluctuation in the model of section 5.2.2. The field ~φ(x, y, z = 0) is
drawn as an arrow in the xy plane. Top figure: one of the degenerate vacuum
states. Bottom figure: a low-energy fluctuation, in which the field in a certain
region is slightly rotated. The energy density of such a fluctuation goes to zero as
the wavelength increases.

5.2.3 Partially breaking a continuous symmetry

As a final example, let’s consider the dynamics of a three-component real

scalar field ~φ with the by now familiar-looking Lagrangian

L =
1

2
∂µ~φ · ∂µ~φ−

1

2
µ2|~φ|2 − 1

4
λ|~φ|4 .
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This theory has an SO(3) symmetry

~φ→ R~φ R ∈ SO(3) .

For µ2 > 0 there’s a unique vacuum at ~φ = 0 and the SO(3) symmetry is

unbroken. For µ2 < 0 spontaneous symmetry breaking occurs.

When the symmetry is broken we have a collection of ground states char-

acterized by

|~φ| =
√
−µ2/λ .

That is, the space of vacua is a two-dimensional sphere S2 ⊂ R3. The

symmetry group acts on the sphere by rotations.

To proceed, let’s first choose a vacuum to expand around. Without loss of

generality we’ll expand around the vacuum at the north pole of the sphere,

namely the point

~φ = (0, 0,
√
−µ2/λ) .

Now let’s see how our vacuum state behaves under symmetry transforma-

tions. Rotations in the 13 and 23 planes act non-trivially on our ground

state. They move it to a different point on the sphere, thereby generating

a two-dimensional space of flat directions. Corresponding to this we expect

to find two massless Goldstone bosons in the spectrum. Rotations in the

12 plane, however, leave our choice of vacuum invariant. They form an

unbroken SO(2) subgroup of the underlying SO(3) symmetry.

To make this a bit more concrete it’s convenient to parametrize fields near

the north pole of the sphere in terms of three real scalar fields σ, x, y defined

by

~φ = σ
(
x, y,

√
1− x2 − y2

)
. (5.5)

The field σ parametrizes radial fluctuations in the fields, while x and y

parametrize points on a unit two-sphere. As in our previous examples one

can set σ =
√
−µ2/λ + ρ and find that ρ has a mass m2

ρ = −2µ2. The

fields x and y are Goldstone bosons. Substituting (5.5) into the Lagrangian

and setting ρ = 0 one is left with the low-energy effective action for the

Goldstone bosons

L =
1

2

(−µ2

λ

)
1

1− x2 − y2

(
∂µx∂

µx+∂µy∂
µy−(x∂µy−y∂µx)(x∂µy−y∂µx)

)
.

Note that the Goldstone bosons
(
x
y

)
transform as a doublet of the unbroken

SO(2) symmetry.
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5.2.4 Symmetry breaking in general

Many aspects of symmetry breaking are determined purely by group theory.

Consider a theory with a symmetry group G. Suppose we’ve found a ground

state where the fields (there could be more than one) take on a value I’ll

denote φ0. The theory might not have a unique ground state. If we act

on φ0 with some g ∈ G we must get another state with exactly the same

energy. This means gφ0 is also a ground state. Barring miracles we’d expect

to obtain the entire space of vacua in this way:

M = (space of vacua) = {gφ0 : g ∈ G}

Now it’s possible that some (or all) elements of G leave the vacuum φ0

invariant. That is, there could be a subgroup H ⊂ G such that

hφ0 = φ0 ∀h ∈ H .

In this case H survives as an unbroken symmetry group. One says that G

is spontaneously broken to H.

This leads to a nice representation of the space of vacua. If g1 = g2h for

some h ∈ H then g1 and g2 have exactly the same effect on φ0: g1φ0 = g2φ0.

This means that M is actually a quotient space, M = G/H, where the

notation just means we’ve imposed an equivalence relation:

G/H ≡ G/{g1 ∼ g2 if g1 = g2h for some h ∈ H} .

This also leads to a nice geometrical picture of the Goldstone bosons: they

are simply fields φI which parametrize M. One can be quite explicit about

the general form of the action for the Goldstone fields. If you think of the

space of vacua as a manifoldM with coordinates φI and metric GIJ(φ), the

low-energy effective action is

S =

∫
d4x

1

2
GIJ(φ)∂µφ

I∂µφJ .

Actions of this form are known as “non-linear σ-models.”† At the classical

level, to find the metric GIJ one can proceed as we did in our SO(2) exam-

ple: rewrite the underlying Lagrangian in terms of Goldstone fields which

parametrize the space of vacua (the analogs of θ) together with fields that

parametrize “radial directions” (the analogs of ρ). Setting the radial fields

equal to their vacuum values, one is left with a non-linear σ-model for the

† Obscure terminology, referring to the fact that the Goldstone fields take values in a curved
space. If the space of vacua is embedded in a larger linear space, sayM⊂ Rn, then the action
for the fields that parametrize the embedding space Rn is known as a linear σ-model.
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Goldstone fields, and one can read off the metric from the action.‡ Finally,

the number of Goldstone bosons is equal to the number of broken symmetry

generators, or equivalently the dimension of the quotient space:

# Goldstones = dimM = dimG− dimH .

5.3 Spontaneous symmetry breaking (quantum)

Now let’s see more directly how spontaneous symmetry breaking plays out

in the quantum theory. First we need to decide: what will signal sponta-

neous symmetry breaking? To this end let’s assume we have a collection of

degenerate ground states related by a symmetry. Let me denote two of these

ground states |0〉, |0′〉. The symmetry is spontaneously broken if |0〉 6= |0′〉.
Instead of applying this criterion directly, it’s often more convenient to

search for a field φ whose vacuum expectation value transforms under the

symmetry:

〈0|φ|0〉 6= 〈0′|φ|0′〉 .

This implies |0〉 6= |0′〉, so it implies spontaneous symmetry breaking as

defined above. Such expectation values are known as “order parameters.”

Now let’s specialize to continuous symmetries. In this case we have a

conserved current jµ(t,x), and we can construct a unitary operator

U(λ) = e−i
∫
d3xλ(x)j0(t,x)

which implements a position-dependent symmetry transformation parametrized

by λ(x). For infinitesimal λ, the change in the ground state |0〉 is

δ|0〉 = −i
∫
d3xλ(x)j0(t,x)|0〉

The condition for spontaneous symmetry breaking is that δ|0〉 does not

vanish, even as λ approaches a constant.†
Claim: for each broken symmetry there is a massless Goldstone boson in

the spectrum.

Let’s give an intuitive proof of this fact. The symmetry takes us from

‡ For instance, in our SO(3) example, 1
1−x2−y2

(
1− y2 xy
xy 1− x2

)
is the metric on a unit

two-sphere.
† Formally as λ(x) approaches a constant we have δ|0〉 = −iλQ|0〉, where Q =

∫
d3x j0 is the

generator of the symmetry. So the condition for spontaneous symmetry breaking is Q|0〉 6= 0.
However one should be careful about discussing Q for a spontaneously broken symmetry: see
Burgess and Moore, exercise 8.2 or Ryder, Quantum field theory p. 300.
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one choice of vacuum state to another, at no cost in energy. Therefore a

small, long-wavelength fluctuation in our choice of vacuum will cost very

little energy. We can write down a state corresponding to a fluctuating

choice of vacuum quite explicitly: it’s just the state

U(λ)|0〉
produced by acting on |0〉 with the unitary operator U(λ). Setting λ =

eip·x, where p is a 3-vector that determines the spatial wavelength of the

fluctuation, to first order the change in the ground state is

δ|0〉 ≡ |p〉 = −i
∫
d3x eip·xj0(t,x)|0〉 .

The state we’ve defined satisfies two properties:

1. It represents an excitation with spatial 3-momentum p.

2. The energy of the excitation vanishes as p→ 0.

This shows that |p〉 describes a massless particle. We identify it as the state

representing a single Goldstone boson with 3-momentum p. To establish

the above properties, note that

1. Under a spatial translation x→ x + a the state |p〉 transforms the way a

momentum eigenstate should: acting with a spatial translation operator

Ta we get

Ta|p〉 =

∫
d3x eip·xj0(t,x + a)|0〉 = e−ip·a|p〉 .

2. We argued above that |0〉 and U(λ)|0〉 ≈ |0〉 + δ|0〉 become degenerate

in energy as the wavelength of the fluctuation increases. This means that

for large wavelength δ|0〉 has the same energy as |0〉 itself. So the energy

associated with the excitation |p〉 must vanish as p→ 0.†

This argument shows that the broken symmetry currents create Goldstone

bosons from the vacuum.‡ This can be expressed in the Lorentz-invariant

form

〈π(p)|jµ(x)|0〉 = ifpµeip·x

where |π(p)〉 is an on-shell one-Goldstone-boson state with 4-momentum p

and f is a fudge factor to normalize the state.§ Note that current conser-

† What would happen if we tried to carry out this construction with an unbroken symmetry
generator, i.e. one that satisfies Q|0〉 = 0?
‡ For a rigorous proof of this see Weinberg, Quantum theory of fields, vol. II p. 169 – 173.
§ For reasons you’ll see in problem 8.2, for pions the fudge factor f is known as the pion decay

constant. It has the numerical value fπ = 93 MeV.
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vation ∂µj
µ = 0 implies that p2 = 0, i.e. massless Goldstone bosons. More

generally, if we had multiple broken symmetry generators Qa we’d have

〈πa(p)|jµ b(x)|0〉 = ifabpµeip·x (5.6)

i.e. one Goldstone boson for each broken symmetry generator.

Finally, we can see the loophole in the usual argument that symmetries

⇒ degeneracies in the spectrum. Let Qa be a symmetry generator and

let φi be a collection of fields that form a representation of the symmetry:

i[Qa, φi] = Daijφj . Then

iQaφi|0〉 = i[Qa, φi]|0〉+ iφiQ
a|0〉 = Daijφj |0〉+ iφiQ

a|0〉 .

The first term is standard: by itself it says particle states form a represen-

tation of the symmetry group. But when the symmetry is spontaneously

broken the second term is non-zero.

References

Symmetries and and spontaneous symmetry breaking are discussed in Cheng

& Li sections 5.1 and 5.3. There’s some nice discussion in Quigg sections

2.3, 5.1, 5.2. Peskin & Schroeder discuss symmetries in section 2.2 and

spontaneous symmetry breaking in section 11.1.

Exercises

5.1 Noether’s theorem for fermions

Consider a general Lagrangian L(ψ, ∂µψ) for a fermionic field ψ.

To incorporate Fermi statistics ψ should be treated as an anticom-

muting or Grassmann-valued number. Recall that Grassmann num-

bers behave like ordinary numbers except that multiplication anti-

commutes: if a and b are two Grassmann numbers then ab = −ba.

One can define differentiation in the obvious way; if a and b are

independent Grassmann variables then

∂a

∂a
=
∂b

∂b
= 1

∂a

∂b
=
∂b

∂a
= 0 .

The derivative operators themselves are anticommuting quantities.

When differentiating products of Grassmann variables we need to
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be careful about ordering. For example we can define a derivative

operator that acts from the left, satisfying

∂L

∂aL
(ab) =

∂a

∂a
b− a ∂b

∂a
= b ,

or one that acts from the right, satisfying

∂R

∂aR
(ab) = a

∂b

∂a
− ∂a

∂a
b = −b .

(i) Show that the Euler-Lagrange equations which make the action

for ψ stationary are

∂µ
∂RL

∂ (∂µψ)R
− ∂RL
∂ψR

= 0 .

(ii) Suppose the Lagrangian is invariant under an infinitesimal trans-

formation ψ → ψ + δψ. Show that the current

jµ =
∂RL

∂ (∂µψ)R
δψ

is conserved. You should treat δψ as a Grassmann number.

5.2 Symmetry breaking in finite volume?

Consider the quantum mechanics of a particle moving in a double

well potential, described by the Lagrangian

L =
1

2
mẋ2 − 1

2
mω2x2 − 1

4
mλx4 .

We’re taking the parameter ω2 to be negative.

(i) Expand the Lagrangian to quadratic order about the two minima

of the potential, and write down approximate (harmonic oscillator)

ground state wavefunctions

Ψ+(x) = 〈x|+〉
Ψ−(x) = 〈x|−〉

describing unit-normalized states |+〉 and |−〉 localized in the right

and left wells, respectively. How do your wavefunctions behave as

m→∞?

(ii) Use the WKB approximation to estimate the tunneling ampli-

tude 〈−|+〉. You can make approximations which are valid for

large m (equivalently small λ).
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Now consider a real scalar field with Lagrangian density (µ2 < 0)

L =
1

2
∂µφ∂

µφ− 1

2
µ2φ2 − 1

4
λφ4 .

The φ→ −φ symmetry is supposed to be spontaneously broken, with

two degenerate ground states |+〉 and |−〉. But can’t the field tunnel

from one minimum to the other? To see what’s happening consider

the same theory but in a finite spatial volume. For simplicity let’s

work in a spatial box of volume V with periodic boundary conditions,

so that we can expand the field in spatial Fourier modes

φ(t,x) =
∑
k

φk(t)eik·x φ−k(t) = φ∗k(t) .

Here k = 2πn/V 1/3 with n ∈ Z3.

(iii) Expand the field theory Lagrangian L =
∫
d3xL to quadratic

order about the classical vacua. Express your answer in terms of

the Fourier coefficients φk(t) and their time derivatives.

(iv) Use the Lagrangian worked out in part (iii) to write down ap-

proximate ground state wavefunctions

Ψ+(φk) describing |+〉
Ψ−(φk) describing |−〉

How do your wavefunctions behave in the limit V →∞?

(v) If you neglect the coupling between different Fourier modes –

something which should be valid at small λ – then the Lagrangian

for the constant mode φk=0 should look familiar. Use your quan-

tum mechanics results to estimate the tunneling amplitude 〈−|+〉
between the two (unit normalized) ground states. How does your

result behave as V →∞?

(vi) How do matrix elements of any finite number of field opera-

tors between the left and right vacua 〈−|φ(t1,x1) · · ·φ(tn,xn)|+〉
behave as V →∞?

Moral of the story: spontaneous symmetry breaking is a phenomenon

associated with the thermodynamic (V → ∞) limit. For a nice

discussion of this see Weinberg QFT vol. II sect. 19.1.
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5.3 O(N) linear σ-model

Consider the Lagrangian

L =
1

2
∂µφ · ∂µφ−

1

2
µ2|φ|2 − 1

4
λ|φ|4

Here φ is a vector containing N scalar fields. Note that L is invariant

under rotations φ→ Rφ where R ∈ SO(N).

(i) Find the conserved currents associated with this symmetry.

(ii) When µ2 < 0 the SO(N) symmetry is spontaneously broken. In

this case identify

• the space of vacua

• the unbroken symmetry group

• the spectrum of particle masses

5.4 O(4) linear σ-model

Specialize to N = 4 and define Σ = φ411 +
∑3

k=1 iφkτk where τk
are Pauli matrices.

(i) Show that det Σ = |φ|2 and Σ∗ = τ2Στ2.

(ii) Rewrite L in terms of Σ.

(iii) In place of SO(4) transformations on φ we now have SU(2)L×
SU(2)R transformations on Σ. These transformations act by Σ→
LΣR† where L,R ∈ SU(2). Show that these transformations leave

det Σ invariant and preserve the property Σ∗ = τ2Στ2.

(iv) Show that one can set Σ = σU where σ > 0 and U ∈ SU(2).

(v) Rewrite the Lagrangian in terms of σ and U . Take µ2 < 0 so

the SU(2)L × SU(2)R symmetry is spontaneously broken and, in

terms of the fields σ and U , identify

• the space of vacua

• the unbroken symmetry group

• the spectrum of particle masses

(vi) Write down the low energy effective action for the Goldstone

bosons.
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5.5 SU(N) nonlinear σ-model

Consider the Lagrangian L = 1
4f

2 Tr
(
∂µU

†∂µU
)

where f is a

constant with units of (mass)2 and U ∈ SU(N). The Lagrangian is

invariant under U → LUR† where L,R ∈ SU(N). Identify

• the space of vacua

• the unbroken symmetry group

• the spectrum of particle masses
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Now we’re ready to see how some of these ideas of symmetries and symmetry

breaking are realized by the strong interactions. But first, some terminology.

If one can decompose

L = L0 + L1

where L0 is invariant under a symmetry and L1 is non-invariant but can

be treated as a perturbation, then one has “explicit symmetry breaking”

by a term in the Lagrangian. This is to be contrasted with “spontaneous

symmetry breaking,” where the Lagrangian is invariant but the ground state

is not. Incidentally, one can have both spontaneous and explicit symmetry

breaking, if L0 by itself breaks the symmetry spontaneously while L1 breaks

it explicitly.

Let’s return to the quark model of section 3.1. For the time being we’ll

ignore quark masses. With three flavors of quarks assembled into

ψ =

 u

d

s


we guessed that the strong interaction Lagrangian looked like

Lstrong = ψ̄iγµ∂µψ + · · ·

As discussed in section 5.1.1 the quark kinetic terms have an SU(3) sym-

metry ψ → Uψ. Assuming this symmetry extends to all of Lstrong the

corresponding conserved currents are

jµa = ψ̄γµT aψ

where the generators T a are 3× 3 traceless Hermitian matrices.

60
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In fact the quark kinetic terms have a larger symmetry group. To make

this manifest we need to decompose the Dirac spinors u, d, s into their left-

and right-handed chiral components. The calculation is identical to what

we did for QED in section 4.1. The result is

Lstrong = ψ̄Liγ
µ∂µψL + ψ̄Riγ

µ∂µψR + · · ·

Here

ψL =
1

2
(1− γ5)ψ and ψR =

1

2
(1 + γ5)ψ

are 4-component spinors, although only two of their components are non-

zero, and

ψ̄L ≡ (ψL)†γ0 ψ̄R ≡ (ψR)†γ0 .

This chiral decomposition makes it clear that the quark kinetic terms

actually have an SU(3)L × SU(3)R symmetry that acts independently on

the left- and right-handed chiral components.†

ψL → LψL ψR → RψR L,R ∈ SU(3) (6.1)

It’s easy to work out the corresponding conserved currents; they’re just what

we had above except they only involve one of the chiral components:

jµaL = ψ̄Lγ
µT aψL = ψ̄γµT a

1

2
(1− γ5)ψ

jµaR = ψ̄Rγ
µT aψR = ψ̄γµT a

1

2
(1 + γ5)ψ

It’s often convenient to work in terms of the “vector” and “axial-vector”

combinations

jµaV = jµaL + jµaR = ψ̄γµT aψ

jµaA = −jµaL + jµaR = ψ̄γµγ5T aψ

The question is what to make of this larger symmetry group. As we’ve

seen the vector current corresponds to Gell-Mann’s flavor SU(3). But what

about the axial current?

The simplest possibility would be for SU(3)A to be explicitly broken by

Lstrong: after all we’ve only been looking at the quark kinetic terms.‡ I can’t

† The full symmetry is U(3)L × U(3)R. As we’ve seen the extra vector-like U(1) corresponds to
conservation of baryon number. The fate of the extra axial U(1) is a fascinating story we’ll
return to in section 13.3.
‡ Picky, picky: the symmetry group is really SU(3)L × SU(3)R. The linear combination R − L

that appears in the axial current doesn’t generate a group, since two axial charges commute to
give a vector charge. I’ll call the axial symmetries SU(3)A anyways.
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say anything against this possibility, except that we might as well assume

SU(3)A is a valid symmetry and see where that assumption leads.

Another possibility is for SU(3)A to be a manifest symmetry of the particle

spectrum. We can rule this out right away. The axial charges

QaA =

∫
d3x j0 a

A

are odd under parity (see Peskin & Schroeder p. 65), so they change the

parity of any state they act on. If SU(3)A were a manifest symmetry there

would have to be scalar (as opposed to pseudoscalar) particles with the same

mass as the pions.

So we’re left with the idea that SU(3)A is a valid symmetry of the strong

interaction Lagrangian, but is spontaneously broken by a choice of ground

state. What order parameter could signal symmetry breaking? It’s a bit

subtle, but suppose the fermion bilinear ψψ̄ acquires an expectation value:

〈0|ψψ̄|0〉 = µ311flavor ⊗ 11spin .

Here µ is a constant with dimensions of mass, and 11 represents the identity

matrix either in flavor or spinor space. In terms of the chiral components

ψL, ψR this is equivalent to

〈ψLψ̄R〉 = µ311flavor ⊗
1

2
(1− γ5)spin

〈ψRψ̄L〉 = µ311flavor ⊗
1

2
(1 + γ5)spin (6.2)

〈ψLψ̄L〉 = 〈ψRψ̄R〉 = 0 .

What’s nice is that this expectation value

• is invariant under Lorentz transformations (check!)

• is invariant under SU(3)V transformations ψL → UψL, ψR → UψR
• completely breaks the SU(3)A symmetry

That is, in (6.1) one needs to set L = R in order to preserve the expecta-

tion value (6.2). So the claim is that strong-coupling effects in QCD cause

qq̄ pairs to condense out of the trivial (perturbative) vacuum; the “chiral

condensate” (6.2) is supposed to be generated dynamically by the strong

interactions.†
In fact, the expectation value can be a bit more general. Whenever a

continuous symmetry is spontaneously broken there should be a manifold

† People often characterize the strength of the chiral condensate by the spinor trace of (6.2),
namely 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 = −4µ3 where the − sign arises from Fermi statistics.
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of inequivalent vacua. We can find this space of vacua just by applying

SU(3)L × SU(3)R transformations to the vev (6.2). The result is

〈ψLψ̄R〉 = µ3U⊗1

2
(1−γ5) 〈ψRψ̄L〉 = µ3U †⊗1

2
(1+γ5) 〈ψLψ̄L〉 = 〈ψRψ̄R〉 = 0

where U = LR† is an SU(3) matrix. In terms of Dirac spinors this can be

rewritten as

〈0|ψψ̄|0〉 = µ3e−iλ
aTaγ5

(6.3)

where U = eiλ
aTa . If our conjecture is right, the space of vacua of QCD is

labeled by an SU(3) matrix U . We’d expect to have dimSU(3) = 8 massless

Goldstone bosons that can be described by a field U(t,x). If we’re at very

low energies then the dynamics of QCD reduces to an effective theory of the

Goldstone bosons. What could the action be? As we’ll discuss in more detail

in the next chapter, there’s a unique candidate with at most two derivatives:

the non-linear σ-model action from the last homework!

Leff =
1

4
f2Tr

(
∂µU

†∂µU
)

This action provides a complete description of the low-energy dynamics of

QCD with three massless quarks.

In the real world various effects – in particular quark mass terms – ex-

plicitly break chiral symmetry. To get an idea of the consequences, current

estimates are that the chiral condensate is characterized by µ ≈ 160 MeV.

This is large compared to the light quark masses

mu ≈ 3 MeV md ≈ 5 MeV ms ≈ 100 MeV

but small compared to the heavy quark masses

mc ≈ 1.3 GeV mb ≈ 4.2 GeV mt ≈ 172 GeV .

For the light quarks the explicit breaking can be treated as a small perturba-

tion of the chiral condensate, so the strong interactions have an approximate

SU(3)L×SU(3)R symmetry. The explicit breaking turns out to give a small

mass to the would-be Goldstone bosons that arise from spontaneous SU(3)A
breaking. Thus in the real world we expect to find eight anomalously light

scalar particles which we can identify with π, K, η. This explains why the

octet mesons are so light – they’re approximate Goldstone bosons! This

also explains Gell-Mann’s flavor SU(3) symmetry and shows why there is

no useful larger flavor symmetry.†
† In this discussion we assumed that µ sets the relevant energy scale. To justify SU(3)A as

an approximate symmetry, it would really be more appropriate to compare the octet meson
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References

Chiral symmetry breaking is discussed in Cheng & Li sections 5.4 and 5.5,

but using a rather old-fashioned algebraic approach. Peskin & Schroeder

discuss chiral symmetry breaking on pages 667 – 670.

Exercises

6.1 Vacuum alignment in the σ-model

Suppose we add an explicit symmetry-breaking perturbation to

our O(4) linear σ-model Lagrangian of problem 5.4.

L =
1

2
∂µφ · ∂µφ−

1

2
µ2|φ|2 − 1

4
λ|φ|4 + a · φ

Here µ2 < 0 and a is a constant vector; for simplicity you can take it

to point in the φ4 direction. What is the unbroken symmetry group?

Identify the (unique) vacuum state and expand about it by setting

Σ = (f + ρ)eiπ·τ/f

Here f is a constant and ρ and π are fields with 〈ρ〉 = 〈π〉 = 0.

Identify the spectrum of particle masses.

6.2 Vacuum alignment in QCD

Strong interactions are supposed to generate a non-zero expecta-

tion value that spontaneously breaks SU(3)L × SU(3)R → SU(3)V .

The space of vacua can be parametrized by a unitary matrix U =

eiλ
aTa that characterizes the expectation value

〈ψψ̄〉 = µ3e−iλ
aTaγ5

.

Here µ is a constant with dimensions of mass. The low energy effec-

tive Lagrangian for the resulting Goldstone bosons is

L =
1

4
f2Tr(∂µU

†∂µU)

where f is another constant with dimensions of mass.

(i) Consider adding a quark mass term Lmass = −ψ̄Mψ to the un-

derlying strong interaction Lagrangian. Argue that for small quark

masses, which measure the strength of SU(3)A breaking, to the scale of chiral perturbation
theory discussed on p. 80.
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masses the explicit breaking due to the mass term can be taken

into account by modifying the effective Lagrangian to read

1

4
f2Tr(∂µU

†∂µU) + 2µ3Tr(M(U + U †)) .

(ii) Identify the ground state of the resulting theory. Compute the

matrix of would-be Goldstone boson masses by expanding the ac-

tion to quadratic order in the fields πa, where πa is defined by

U = eiπ
aTa/f with TrT aT b = 2δab.

(iii) Use your results to predict the η mass in terms of m2
π± , m2

π0 ,

m2
K± , m2

K0 , m2
K̄0 . How does your prediction compare to the data?

(You can ignore small isospin breaking effects and set mu = md.)
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7.1 Effective field theory

In a couple places – deriving SU(3) symmetry currents of the quark model,

writing down effective actions for Goldstone bosons – we’ve given arguments

involving dimensional analysis and the notion of an approximate low-energy

description. I’d like to discuss these ideas a little more explicitly. I’ll proceed

by way of two examples.

7.1.1 Example I: φ2χ theory

Let me start with the following Lagrangian for two scalar fields.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

1

2
∂µχ∂

µχ− 1

2
M2χ2 − 1

2
gφ2χ (7.1)

Here g is a coupling with dimensions of mass. We’ll be interested in m�M

with g and M comparable in magnitude. To be concrete let’s study φ-φ

scattering. The Feynman rules are

66
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p

φφ φ propagator i
p2 −m2

p

χχ χ propagator i
p2 −M2

φ

φ

χ φ2χ vertex −ig

At lowest order the diagrams are

++

⇒M =
g2

s−M2
+

g2

t−M2
+

g2

u−M2

Here s = (p1 +p2)2, t = (p1−p3)2, u = (p1−p4)2 are the usual Mandelstam

variables.

Suppose a low-energy observer sets out to study φ-φ scattering at a center-

of-mass energy E =
√
s � M . Such an observer can’t directly detect

χ particles. To understand what such an observer does see, let’s expand

the scattering amplitude in inverse powers of M (recall that we’re counting

g = O(M)):

M = −3g2

M2︸ ︷︷ ︸
O(M0)

− g
2(s+ t+ u)

M4︸ ︷︷ ︸
O(1/M2)

− g
2(s2 + t2 + u2)

M6︸ ︷︷ ︸
O(1/M4)

+ · · · (7.2)

How would our low-energy observer interpret this expansion?

At leading order the scattering amplitude is simply −3g2/M2. A low-

energy observer would interpret this as coming from an elementary φ4 in-



68 Effective field theory and renormalization

teraction – that is, in terms of an “effective Lagrangian”

L4 =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 .

L4 is known as a dimension-4 effective Lagrangian since it includes operators

with (mass) dimension up to 4. This reproduces the leading term in the φ-φ

scattering amplitude provided λ = −3g2/M2. However note that according

to a low-energy observer the value of λ just has to be taken from experiment.

More precise experiments could measure the first two terms in the expan-

sion of the amplitude. These terms can be reproduced by the dimension-6

effective Lagrangian

L6 =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 − 1

8
λ′φ2�φ2 .

To reproduce (7.2) up to O(1/M2), one has to set λ = −3g2/M2 and λ′ =

g2/M4.

In this way one can construct a sequence of ever-more-accurate (but ever-

more-complicated) effective Lagrangians L4, L6, L8, . . . that reproduce the

first 1, 2, 3, . . . terms in the expansion of the scattering amplitude. In fact, in

this simple theory, one can write down an “all-orders” effective Lagrangian

for φ that exactly reproduces all scattering amplitudes that only have ex-

ternal φ particles:

L∞ =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

1

8
g2φ2 1

�+M2
φ2 . (7.3)

Here you can regard the peculiar-looking 1/(�+M2) as defined by the series

1

�+M2
=

1

M2
− �
M4

+
�2

M6
∓ · · ·

But note that this whole effective field theory approach breaks down for

scattering at energies E ∼M , when χ particles can be produced.

Moral of the story: think of φ as describing observable physics at an

energy scale E, while χ describes some unknown high-energy physics at the

scale M . You might think that χ has no effect when E �M , but as we’ve

seen, this just isn’t true. Rather high-energy physics leaves an imprint on

low-energy phenomena, in a way that can be organized as an expansion in

E/M . The leading behavior for E � M is captured by conventional λφ4

theory!
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7.1.2 Example II: φ2χ2 theory

As our next example consider

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

1

2
∂µχ∂

µχ− 1

2
M2χ2 − 1

4
λφ2χ2

We’ll continue to take m � M . So the only real change is that we now

have a 4-point φ2χ2 interaction; corresponding to this the coupling λ is

dimensionless. The vertex is

χ

χφ

φ

−iλ

As before we’ll be interested in φ-φ scattering at energies E � M . Given

our previous example, at leading order we’d expect this to be described in

terms of a dimension-4 effective Lagrangian

Leff =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λeffφ

4

with some effective 4-point coupling λeff . Also we might expect that since

λeff is dimensionless it can only depend on the dimensionless quantities in

the problem, namely the underlying coupling and ratio of masses: λeff =

λeff(λ,m/M).

This argument turns out to be a bit too quick. To see what’s actually

going on let’s do two computations, one in the effective theory and one in the

underlying theory, and match the results. In the effective theory at leading

order φ-φ scattering is given by

⇒ −iM = −iλeff

Here, just for simplicity, I’ve set the external momenta to zero.† On the other

hand, in the underlying theory, the leading contribution to φ-φ scattering

comes from

† This means we aren’t studying a physical scattering process. If this bothers you just imagine
embedding this process inside a larger diagram. Alternatively, you can carry out the slightly
more involved matching of on-shell scattering amplitudes.



70 Effective field theory and renormalization

++

⇒ −iM = 3 · 1

2
· (−iλ)2

∫
d4k

(2π)4

(
i

k2 −M2

)2

(the factor of three comes from the three diagrams, the factor of 1/2 is a

symmetry factor – see Peskin & Schroeder p. 93). The two amplitudes agree

provided

λeff =
3iλ2

2

∫
d4k

(2π)4

1

(k2 −M2)2
.

The integral is, umm, divergent. We’ll fix this shortly by putting in a

cutoff, but for now let’s just push on. The standard technique for doing

loop integrals is to “Wick rotate” to Euclidean space. Define a Euclidean

momentum

kµE = (−ik0; k)

which satisfies

k2
E ≡ δµνkµEkνE = −(k0)2 + |k|2 = −k2 ≡ −gµνkµkν .

By rotating the k0 contour of integration 90◦ counterclockwise in the com-

plex plane† we can replace∫ ∞
−∞

dk0 →
∫ i∞

−i∞
dk0 = i

∫ ∞
−∞

dk0
E

to obtain

λeff = −3λ2

2

∫
d4kE
(2π)4

1

(k2
E +M2)2

.

The integrand is spherically symmetric so we can replace d4kE → 2π2k3
EdkE

where 2π2 is the “area” of a unit 3-sphere. So finally

λeff = − 3λ2

16π2

∫ ∞
0

k3
EdkE

(k2
E +M2)2

.

† The integrand vanishes rapidly enough at large k0 to make this rotation possible. Also one has
to mind the iε’s. See Peskin & Schroeder p. 193.
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To make sense of this we need some kind of cutoff, which you can think of

as an ad-hoc, short-distance modification to the theory. A simple way to

introduce a cutoff is to restrict |kE | < Λ. We’re left with

λeff = − 3λ2

16π2

∫ Λ

0

k3
EdkE

(k2
E +M2)2

= − 3λ2

32π2

[
log

Λ2 +M2

M2
− Λ2

Λ2 +M2

]
.

(7.4)

Moral of the story: you need a cutoff Λ to make sense of a quantum

field theory. Low-energy physics can be described by an effective φ4 theory

with a coupling λeff . The value of λeff depends on the cutoff through the

dimensionless ratio Λ/M .

7.1.3 Effective field theory generalities

The conventional wisdom on effective field theories:

• By “integrating out”† short-distance, high-energy degrees of freedom one

can obtain an effective Lagrangian for the low energy degrees of freedom.

• The (all-orders) effective Lagrangian should contain all possible terms that

are compatible with the symmetries of the underlying Lagrangian (even

if those symmetries are spontaneously broken!). For example, in φ2χ

theory, the effective Lagrangian (7.3) respects the φ → −φ symmetry of

the underlying theory.

• The effective Lagrangian has to be respect dimensional analysis. How-

ever, in doing dimensional analysis, don’t forget about the cutoff scale

Λ of the underlying theory. For example, in φ2χ2 theory, the effective

dimensionless coupling (7.4) depends on the ratio Λ/M .

As an example of the power of this sort of reasoning, let’s ask: what theory

describes the massless Goldstone bosons associated with chiral symmetry

breaking? The Goldstones can be described by a field

U(x) = eiπ
aTa/f ∈ SU(3) .

Terms in Leff with no derivatives are ruled out (remember U parametrizes

the space of vacua, so the potential energy can’t depend on U). Terms with

one derivative aren’t Lorentz invariant. There’s only one term with two

derivatives that respects the symmetry U → LUR†, so up to two derivatives

† The term comes from path integrals, where one does the functional integral over χ first.
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the effective action is

Leff =
1

4
f2Tr

(
∂µU

†∂µU
)
. (7.5)

The coupling f has units of energy.† You can write down terms in the ef-

fective Lagrangian with more derivatives. But when you expand in powers

of the Goldstone fields πa such terms only contribute at dimension 6 and

higher. So the low energy interactions of the Goldstone bosons, involving

operators up to dimension 4, are completely fixed in terms of one undeter-

mined parameter f .

As a further example of the power of effective field theory reasoning,

recall the O(4) linear σ-model from the homework. This theory had an

SO(4) ≈ SU(2) × SU(2) symmetry group which spontaneously broke to

an SU(2) subgroup. Let’s compare this to the behavior of QCD with two

flavors of massless quarks. With two flavors QCD has an SU(2)L×SU(2)R
chiral symmetry that presumably spontaneously breaks to an SU(2) isospin

subgroup. The symmetry breaking patterns are the same, so the low-energy

dynamics of the Goldstone bosons are the same. This means that, from the

point of view of a low energy observer, QCD with two flavors of massless

quarks cannot be distinguished from an O(4) linear σ-model. Of course, to

a high energy observer, the two theories could not be more different.

7.2 Renormalization

It’s best to think of all quantum field theories as effective field theories. In

particular one should always have a cutoff scale Λ in mind. It’s important

to recognize that this cutoff could arise in two different ways.

(i) As a reflection of new short-distance physics (such as new types of

particles or new types of interactions) that kick in at the scale Λ.

In this case the cutoff is physical, in the sense that the theoretical

framework really changes at the scale Λ.

(ii) As a matter of convenience. It’s very useful to focus on a certain

energy scale – say set by the c.m. energy of a given scattering process

– and ignore what’s going on at much larger energy scales. To do

this it’s useful to put in a cutoff, even though it’s not necessary in

the sense that nothing special happens at the scale Λ.

† For pions, where U = eiπ
aσa/f is an SU(2) matrix, the coupling is denoted fπ . It’s known

as the pion decay constant for reasons you’ll see in problem 8.2. Warning: the value for fπ is
convention-dependent. With the normalizations we are using fπ = 93 MeV.
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Now that we have a cutoff in mind, an important question arises: how

does the cutoff enter into physical quantities? This leads to the subject of

renormalization. I’ll illustrate it by way of a few examples.

7.2.1 Renormalization in φ4 theory

Suppose we have φ4 theory with a cutoff Λ on the Euclidean loop momentum.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4

restrict |kE | < Λ

At face value we now have a three-dimensional space of theories labeled

by the mass m, the value of the coupling λ and the value of the cutoff

Λ. However some of these theories are equivalent as far as any low-energy

observer can tell. We’d like to identify these families of equivalent theories.

To find a particular family think of the parameters in our Lagrangian as

depending on the value of the cutoff: m = m(Λ), λ = λ(Λ). The functions

m(Λ), λ(Λ) are determined by changing the cutoff and requiring that low-

energy physics stays the same. For a preview of the results see figure 7.1.

To see how this works, suppose somebody decides to study φ4 theory with

a cutoff Λ.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4

restrict |kE | < Λ

Someone else comes along and writes down an effective theory with a smaller

cutoff, Λ′ = Λ− δΛ. Denoting this theory with primes

L′ = 1

2
∂µφ

′∂µφ′ − 1

2
m′2φ′2 − 1

4!
λ′φ′4

restrict |kE | < Λ′

These theories will be equivalent at low energies provided we relate the

parameters in an appropriate way. To relate m and m′ we require that the

φ and φ′ propagators have the same behavior at low energy: you’ll see this

on the homework, so I won’t go into details here. To relate λ and λ′ we

require that low-energy scattering amplitudes agree.

With this motivation let’s study φ-φ scattering at zero momentum. At

tree level in the primed theory we have
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⇒ −iM′ = −iλ′

In the unprimed theory let’s decompose φ = φ′ + χ, where the Euclidean

loop momenta of these fields are restricted so that

φ includes all Fourier modes with |kE | < Λ

φ′ includes all modes with |kE | < Λ′

χ only has modes with Λ′ < |kE | < Λ (7.6)

We get some complicated-looking interactions

Lint = − 1

4!
λφ4 = − 1

4!
λ
(
φ′4 + 4φ′3χ+ 6φ′2χ2 + 4φ′χ3 + χ4

)
corresponding to vertices

Here a solid line represents a φ′ particle, while a dashed line represents a χ

particle; the Feynman rules for all these interactions are the same: just −iλ.

In the primed theory we did a tree-level calculation. In the unprimed

theory this corresponds to a calculation where we have no φ′ loops but

arbitrary numbers of χ loops:

+ + +

+ diagrams with more χ loops

(we’re neglecting diagrams such as that get absorbed into the

relationship between m and m′). I’ll stop at a single χ loop. We encountered
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these diagrams in our φ2χ2 example, so we can write down the answer

immediately.

−iM = −iλ+
3iλ2

2

∫ Λ

Λ′

d4kE
(2π)4

1

(k2
E +m2)2

Note that the range of χ momenta is restricted according to (7.6).

Our two effective field theories will agree provided M′ = M or equiva-

lently

λ′ = λ− 3λ2

2

∫ Λ

Λ′

d4kE
(2π)4

1

(k2
E +m2)2

Just to simplify things let’s assume Λ� m so that

λ′ = λ− 3λ2

16π2

∫ Λ

Λ′

dkE
kE

.

If we take δΛ = Λ− Λ′ to be infinitesimal we get

λ− dλ

dΛ
δΛ = λ− 3λ2

16π2

δΛ

Λ
.

Thus we’ve obtained a differential equation that determines the cutoff de-

pendence of the coupling.

dλ

dΛ
=

3λ2

16π2Λ
⇒ 1

λ(Λ)
= − 3

16π2
log Λ + const.

It’s convenient to specify the constant of integration by choosing an arbitrary

energy scale µ and writing

1

λ(Λ)
=

1

λ(µ)
− 3

16π2
log

Λ

µ
(7.7)

Here µ is the “renormalization scale” and λ(µ) is the one-loop “running

coupling” or “renormalized coupling”.

Buzzwords: for each value of λ(µ) we’ve found a family of effective field

theories, related by “renormalization group flow,” whose physical conse-

quences at low energies are the same. Each family makes up a curve or

“renormalization group trajectory” in the (λ,Λ) plane. This is illustrated

in figure 7.1. The scale dependence of the coupling is controlled by the

“β-function”

β(λ) ≡ dλ

d log Λ
=

3λ2

16π2
+O(λ3)
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λ(Λ)

1.0e!10 1.0e+201.0e+101
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1.0e!20

8

Λ/µ

Fig. 7.1. One-loop running coupling versus scale for λ(µ) = 0.5, 1.0, 1.5, 2.0, 3.0.
Each curve represents a single renormalization group trajectory. Note that the
horizontal axis is on a log scale.

The solution to this differential equation, given in (7.7), is absolutely fun-

damental: it tells you how the coupling has to be changed in order to com-

pensate for a change in cutoff. Equivalently, if you regard Λ and the bare

coupling λ(Λ) as fixed, it tells you how the renormalized coupling has to be

changed if you shift your renormalization scale µ.

According to (7.7) the bare coupling vanishes as Λ → 0. As Λ increases

the degrees of freedom at the cutoff scale become more and more strongly

coupled. In fact, if you take (7.7) seriously, the bare coupling diverges at Λ =

Λmax = µe16π2/3λ(µ). Of course our perturbative analysis isn’t trustworthy

once the theory becomes strongly coupled. But we can reach an interesting



7.2 Renormalization 77

conclusion: something has to happen before the scale Λmax. At the very

least perturbation theory has to break down.†

7.2.2 Renormalization in QED

As a second example let’s look at renormalization in QED. We’ll concentrate

on the so-called “field strength renormalization” of the electromagnetic field,

since this turns out to be responsible for the running of electric charge.

Consider QED with a cutoff Λ on the Euclidean loop momentum.

L = −1

4
ξFµνF

µν + ψ̄ [iγµ(∂µ + ieQAµ)−m]ψ

restrict |kE | < Λ

Here we’ve generalized the QED Lagrangian slightly, by introducing an ar-

bitrary normalization constant ξ in front of the Maxwell kinetic term. If we

lower the cutoff a bit, to Λ′ = Λ− δΛ, we’d write down a new theory†

L′ = −1

4
ξ′FµνFµν + ψ̄

[
iγµ(∂µ + ie′QAµ)−m′

]
ψ

restrict |kE | < Λ′

The two theories will agree provided we relate ξ and ξ′ appropriately. We’ll

neglect the differences between e,m and e′,m′ since it turns out they don’t

matter for our purposes. Likewise we’ll neglect the possibility of putting a

normalization constant in front of the Dirac kinetic term.

To fix the relation between ξ and ξ′ we require that the photon propaga-

tors computed in the two theories agree at low energy. Rather than match

propagators directly, it’s a bit simpler to use

ξ′ ≡ ξ(Λ′) = ξ(Λ)− dξ

dΛ
δΛ .

Plugging this into the primed Lagrangian and comparing the two theories,

the primed Lagrangian has an extra term

1

4

dξ

dΛ
δΛFµνF

µν = −1

2

dξ

dΛ
δΛAµ

(
gµν∂λ∂

λ − ∂µ∂ν
)
Aν

which corresponds to a two-photon vertex

† Something more dramatic probably has to happen. It’s likely that one can’t make sense of the
theory when Λ gets too large. See Weinberg, QFT vol. II p. 137.
† I’ve gotten lazy and haven’t bothered putting primes on the fields in L′; it should be clear from

the context what range of Euclidean momenta is allowed.
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ν

k

µ i
dξ

dΛ
δΛ
(
gµνk

2 − kµkν
)

In the unprimed theory, on the other hand, the photon propagator receives

corrections from the vacuum polarization diagram studied in appendix C.

In order for the two theories to agree we must have

ν

k

µ =

k

µ ν

k

In equations this means

i
dξ

dΛ
δΛ
(
gµνk

2 − kµkν
)

= −4e2Q2
(
gµνk

2 − kµkν
) ∫ 1

0
dx

∫
d4q

(2π)4

2x(1− x)

(q2 + k2x(1− x)−m2)2

where the electron loop momentum is restricted to Λ′ < |qE | < Λ. Note

that the projection operators gµνk
2 − kµkν cancel. Let’s do the matching

at k2 = 0, and for simplicity let’s neglect the electron mass relative to the

cutoff. Then Wick rotating we get

i
dξ

dΛ
δΛ = −4e2Q2

∫ 1

0
dx 2x(1− x)︸ ︷︷ ︸

= 1/3

∫ Λ

Λ′

id4qE
(2π)4

1

q4
E︸ ︷︷ ︸

= iδΛ/8π2Λ

or

dξ

dΛ
= − e

2Q2

6π2Λ
.

This means the normalization of the Maxwell kinetic term depends on the

cutoff. To see the physical significance of this fact it’s useful to rescale the

gauge field Aµ → 1√
ξ
Aµ. The rescaled gauge field has a canonical kinetic

term. However from the form of the covariant derivative Dµ = ∂µ + ieQAµ
we see that the physical electric charge – the quantity that shows up in the

vertex for emitting a canonically-normalized photon – is given by ephys =
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e/
√
ξ. This evolves with scale according to†

d

dΛ
e2

phys =
d

dΛ

e2

ξ
= −e

2

ξ2

dξ

dΛ
=
e4

physQ
2

6π2Λ
.

Introducing an arbitrary renormalization scale µ, we can write the solution

to this differential equation as

1

e2
phys(Λ)

=
1

e2
phys(µ)

− Q2

6π2
log

Λ

µ
.

Qualitatively the behavior of QED is pretty similar to φ4 theory. Neglecting

the electron mass the physical electric charge goes to zero at long distances,

while at short distances QED becomes more and more strongly coupled.

In the one-loop approximation the physical electric charge blows up when

Λ = Λmax = µe6π2/e2phys(µ)Q2

.

7.2.3 Comments on renormalization

The sort of analysis we have done is very powerful. The renormalization

group packages the way in which the cutoff can enter in physical quantities.

By reorganizing perturbation theory as an expansion in powers of the renor-

malized coupling λ(µ) rather than the bare coupling λ(Λ) one can express

scattering amplitudes in terms of finite measurable quantities. (“Finite” in

the sense that λ(µ) is independent of the cutoff, and “measurable” in the

sense that λ(µ) can be extracted from experimental input – say the cross

section for φ – φ scattering measured at some energy scale.)

That’s how renormalization was first introduced: as a tool for handling

divergent Feynman diagrams. But renormalization is not merely a technique

for understanding cutoff dependence. The relationship between λ(µ) and

λ(Λ) is non-linear. This means renormalization mixes different orders in

perturbation theory. By choosing µ appropriately one can “improve” the

reorganized perturbation theory (that is, make the leading term as dominant

as possible). You’ll see examples of this on the homework.

Finally let me comment on the relation between Wilson’s approach to

renormalization as described here and the more conventional field theory

approach. In the conventional approach one always has the Λ→∞ limit in

mind. The Lagrangian at the scale Λ is referred to as the “bare Lagrangian,”

† We’re assuming the parameter e2 doesn’t depend on Λ. To establish this one has to do some
further analysis: Peskin and Schroeder p. 334 or Ramond p. 256. Alternatively one can bypass
this issue by working with external static charges as in problem 7.4.
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while the Lagrangian at the scale µ is the “renormalized Lagrangian.” One

builds up the difference between L(Λ) and L(µ) order-by-order in pertur-

bation theory, by adding “counterterms” to the renormalized Lagrangian.

In doing this one holds the renormalized couplings λ(µ) fixed by imposing

“renormalization conditions” on scattering amplitudes.
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Exercises

7.1 π – π scattering
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If you take the pion effective Lagrangian

L =
1

4
f2
πTr(∂µU

†∂µU) + 2µ3Tr(M(U + U †))

and expand it to fourth order in the pion fields you find interaction

terms that describe low-energy π – π scattering. Conventions: U =

eiπ
aσa/fπ is an SU(2) matrix where σa are Pauli matrices and fπ =

93 MeV. I’m working in a Cartesian basis where a = 1, 2, 3. For

simplicity I’ll set mu = md so that isospin is an exact symmetry.

The resulting 4-pion vertex is (sorry)

4k k

k ka
1 2

b

c 3 d − i

3f2
π

[
δabδcd

(
(k1 + k2) · (k3 + k4)− 2k1 · k2 − 2k3 · k4 −m2

π

)
+ δacδbd

(
(k1 + k3) · (k2 + k4)− 2k1 · k3 − 2k2 · k4 −m2

π

)
+ δadδbc

(
(k1 + k4) · (k2 + k3)− 2k1 · k4 − 2k2 · k3 −m2

π

)]

Note that all momenta are directed inwards in the vertex.

(i) Compute the scattering amplitude for πa(k1)πb(k2)→ πc(k3)πd(k4).

Here a, b, c, d are isospin labels and k1, k2, k3, k4 are external mo-

menta.

(ii) Since we have two pions the initial state could have total isospin

I = 0, 1, 2. Extract the scattering amplitude in the various isospin

channels by putting in initial isospin wavefunctions proportional

to

I = 0 : δab I = 1 : (antisymmetric)ab I = 2 : (symmetric traceless)ab

(iii) Evaluate the amplitudes in the various channels “at threshold”

(meaning in the limit where the pions have vanishing spatial mo-

mentum).

(iv) Threshold scattering amplitudes are usually expressed in terms

of “scattering lengths” defined (for s-wave scattering) by a =

−M/32πmπ.† For I = 0, 2 the experimental values and statistical

errors are (Brookhaven E865 collaboration, arXiv:hep-ex/0301040)

aI=0 = (0.216± 0.013)m−1
π aI=2 = (−0.0454± 0.0031)m−1

π

How well did you do?

† This is in the convention where the sum of Feynman diagrams gives −iM. For a complete
discussion of pion scattering see section VI-4 in Donoghue et. al., Dynamics of the standard
model.
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7.2 Mass renormalization in φ4 theory

Let’s study renormalization of the mass parameter in φ4 theory.

As in the notes we consider

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4

with a cutoff on the Euclidean loop momentum Λ, and

L′ = 1

2
∂µφ

′∂µφ′ − 1

2
m′2φ′2 − 1

4!
λ′φ′4

with a cutoff Λ′ = Λ − δΛ. The idea is to match the tree-level

propagator in the primed theory to the corresponding quantity in

the unprimed theory, namely the sum of diagrams

+ . . .+

(i) In the primed theory the propagator is

i

p2 −m′2 .

Set m′2 = m2 + δm2 where δm2 = −dm2

dΛ δΛ. Expand the propa-

gator to first order in δΛ.

(ii) Match your answer to the corresponding calculation in the un-

primed theory. You can stop at a single χ loop, and for simplicity

you can assume m � Λ. You should obtain a trivial differential

equation for the mass parameter and solve it to find m2(Λ).

7.3 Renormalization and scattering

(i) Write down the one-loop four-point scattering amplitude in 1
4!λφ

4

theory, coming from the diagrams

+ + +

To regulate the diagrams you should Wick rotate to Euclidean

space and put a cutoff on the magnitude of the Euclidean mo-

mentum: k2
Euclidean < Λ2. You should keep the external momenta
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non-zero, however you don’t need to work at evaluating any loop

integrals.

(ii) It’s useful to reorganize perturbation theory as an expansion in

the renormalized coupling λ(µ), defined by

1

λ(Λ)
=

1

λ(µ)
− 3

16π2
log

Λ

µ
.

Rewrite your scattering amplitude as an expansion in powers of

λ(µ) up to O(λ(µ)2).

(iii) You can “improve” perturbation theory by choosing µ in order

to make the O(λ(µ)2) terms in your scattering amplitude as small

as possible. Suppose you were interested in soft scattering, s ≈ t ≈
u ≈ 0. What value of µ should you use? Alternatively, suppose

you were interested in the “deep Euclidean” regime where s, t, u

are large and negative (meaning s ≈ t ≈ u � −m2). Now what

value of µ should you use? (Here s, t, u are the usual Mandelstam

variables. The values I’m suggesting do not satisfy the mass-shell

condition s+ t+ u = 4m2; if this bothers you imagine embedding

the four-point amplitude inside a larger diagram.)

Moral of the story: it’s best to work in terms of a renormalized

coupling evaluated at the energy scale relevant to the process you’re

considering.

7.4 Renormalized Coulomb potential

Consider coupling the electromagnetic field to a conserved external

current Jµ(x). The Lagrangian is

L = −1

4
FµνF

µν − JµAµ .

The Feynman rules for this theory are

k

µ ν
−igµν
k2

k

µ −iJµ(k)

where Jµ(k) =
∫
d4x eik·xJµ(x). These rules are set up so the sum of

connected Feynman diagrams gives −i
∫
d4xHint where Hint is the

energy density due to interactions.
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(i) Introduce two point charges Q1, Q2 at positions x1, x2 by setting

J0(x) = eQ1δ
3(x− x1) + eQ2δ

3(x− x2)

J i = 0 i = 1, 2, 3

We’re measuring the charges in units of e =
√

4πα. Compute the

interaction energy by evaluating the diagram

21 QQ

You should integrate over the photon momentum. Do you recover

the usual Coulomb potential?

(ii) The photon propagator receives corrections from a virtual e+ –

e− loop via the diagram

As shown in appendix C, this diagram equals

−4e2
(
gµνk

2 − kµkν
) ∫ 1

0
dx

∫
|qE |<Λ

d4q

(2π)4

2x(1− x)

(q2 + k2x(1− x)−m2)2 .

(7.8)

Here m is the electron mass and Λ is a cutoff on the Euclidean loop

momentum. Note that we haven’t included photon propagators on

the external lines in (7.8). Use this result to write an expression for

the tree-level plus one-loop potential between two static charges.

There’s no need to evaluate any integrals at this stage.

(iii) Use your result in part (ii) to derive the running coupling con-

stant as follows. Set the electron mass to zero for simplicity. Con-

sider changing the value of the cutoff, Λ → Λ − δΛ. Allow the

electric charge to depend on Λ, e2 → e2(Λ), and show that up

to order e4 the tree plus one-loop potential between two widely

separated charges is independent of Λ provided

de2

dΛ
=

e4

6π2Λ

or equivalently

1

e2(Λ)
=

1

e2(µ)
− 1

6π2
log

Λ

µ
.
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Here µ is an arbitrary renormalization scale. Hints: for widely sep-

arated charges the typical photon momentum k is negligible com-

pared to the cutoff Λ. Also since the external current is conserved,

kµJ
µ(k) = 0, you can drop corrections to the photon propagator

proportional to kµ.

(iv) Similar to problem 7.3: suppose you were interested in the

potential between two unit charges separated by a distance r.

You can still set the electron mass to zero. Working in terms

of the renormalized coupling the tree diagram gives a potential

e2(µ)/4πr. How should you choose the renormalization scale to

make the loop corrections to this as small as possible? Hint: think

about which photon momentum makes the dominant contribution

to the potential.

(v) Re-do part (iii), but keeping track of the electron mass. It’s

convenient to set the renormalization scale µ to zero, that is, to

solve for e2(Λ) in terms of e2(0). Expand your answer to find how

e2(Λ) behaves for Λ � m and for Λ � m. Make a qualitative

sketch of e2(Λ).

Moral of the story: matching the potential between widely separated

charges provides a way to obtain the physical running coupling in

QED. As always, you should choose µ to reflect the important energy

scale in the problem. Finally the electron mass cuts off the running

of the coupling, which is why we’re used to thinking of e as a fixed

constant!
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A typical weak process is pion decay π− → µ−ν̄µ.

π−

 _
u
_

d

νµ

µ
_

Another typical process is muon decay µ+ → e+νeν̄µ.

e+

µ+

_
νµ

νe

This is closely related to ‘inverse muon decay,’ or scattering νµe
− → µ−νe.

e

µ
_

νe
_

νµ

The amplitudes for muon and inverse muon decay are related by crossing

86
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symmetry. What’s nice about IMD is that it’s experimentally accessible

(you can make νµ beams by letting pions decay in-flight).

We’d like to write an effective Lagrangian which can describe these sorts

of weak interactions at low energies. Unfortunately the general principles

of effective field theory don’t get us very far. For example, to describe

muon or inverse muon decay, they’d tell us to write down the most general

Lorentz-invariant coupling of four spinor fields µ, νµ, e, νe (the names of the

particles stand for the corresponding Dirac fields). The problem is there are

many such couplings. Fortunately Fermi (in 1934!) proposed a much more

predictive theory which, with some parity-violating modifications, turned

out to be right.

With no further ado, the effective Lagrangian which describes muon or

inverse muon decay is

L1 = − 1√
2
GF

[
µ̄γα(1− γ5)νµ ν̄eγα(1− γ5)e+ c.c.

]
(8.1)

c.c. = ν̄µγ
α(1− γ5)µ ēγα(1− γ5)νe

Here Fermi’s constant GF = 1.2 × 10−5 GeV−2. A very similar-looking

interaction describes pion decay, namely

L2 = − 1√
2
GF cos θC

[
µ̄γα(1− γ5)νµ ūγα(1− γ5)d+ c.c.

]
The only difference in structure between L1 and L2 is that the Cabibbo

angle θC = 13◦ reflects quark mixing, a subject we’ll say more about later.

One can write down similar 4-Fermi interactions for other weak processes.

A crucial feature of all these Lagrangians is that†

weak interactions only couple to left-handed chiral spinors
(8.2)

To see this recall that PL = 1
2(1− γ5) is a left-handed projection operator.

In terms of ψL ≡ PLψ, ψ̄L = (ψL)†γ0

L1 = −2
√

2GF [µ̄Lγ
ανµL ν̄eLγαeL + c.c.]

which makes it clear that only left-handed spinors enter. This is often re-

ferred to as the “V − A” structure of weak interactions (for “vector minus

axial vector”).

Observational evidence for V −A comes from the decay π− → µ−ν̄µ. The

pion is spinless. In the center of mass frame the muon and antineutrino

† more precisely this holds for “charged current” weak interactions. We’ll get to weak neutral
currents later.
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come out back-to-back, with no orbital angular momentum along their di-

rection of motion. So just from conservation of angular momentum there are

two possible final state polarizations: both particles right-handed (positive

helicity) or both particles left-handed (negative helicity).

µ
_

µ
_

ν positive helicity (observed)

µ
_

µ
_

ν negative helicity (not observed)

It’s found experimentally that only right-handed muons and antineutrinos

are produced. This seemingly minor fact has far-reaching consequences.

(i) Momentum is a vector and angular momentum is a pseudovector, so

the two final states pictured above are exchanged by parity (plus a

180◦ spatial rotation). The fact that only one final state is observed

means that weak interactions violate parity, and in fact violate it

maximally.

(ii) For a massless particle such as an antineutrino helicity and chirality

are related. A right-handed antineutrino sits inside a left-handed

chiral spinor, as required to participate in weak interactions according

to (8.2).

(iii) Wait a minute, you say, what about the muon? If the muon were

massless then a right-handed muon would sit in a right-handed chi-

ral spinor and shouldn’t participate in weak interactions. It’s the

non-zero muon mass that breaks the connection between helicity and

chirality and allows the muon to come out with the “wrong” polar-

ization.

(iv) This leads to an interesting prediction: in the limit of vanishing muon

mass the decay π− → µ−ν̄µ is forbidden. Of course we can’t change

the muon mass. But we can compare the rates for π− → µ−ν̄µ and

π− → e−ν̄e. The branching ratios are

B.R.(π− → µ−ν̄µ) ≈ 1

B.R.(π− → e−ν̄e) = 1.23× 10−4

Pions prefer to decay to muons, even though phase space favors elec-

trons as a decay product!



Effective weak interactions: 4-Fermi theory 89

Having given some evidence for the form of the weak interaction La-

grangian let’s calculate the amplitude for inverse muon decay.

3

_ νe

νµ
_
µ

p p

p
4

p
2

1

e

−iM = − i√
2
GF ū(p3)γα(1− γ5)u(p1) ū(p4)γα(1− γ5)u(p2) (8.3)

∑
spins

|M|2 =
1

2
G2
FTr

(
(p/3 +mµ)γα(1− γ5)p/1(1 + γ5)γβ

)
Tr
(
p/4γα(1− γ5)(p/2 +me)(1 + γ5)γβ

)
The electron and muon masses drop out since the trace of an odd number

of Dirac matrices vanishes. Also the chiral projection operators can be

combined to give∑
spins

|M|2 = 2G2
FTr

(
p/3γ

αp/1(1 + γ5)γβ
)

Tr
(
p/4γαp/2(1 + γ5)γβ

)
You just have to grind through the remaining traces; for details see Quigg

p. 90. The result is quite simple,∑
spins

|M|2 = 128G2
F p1 · p2 p3 · p4 (8.4)

Dividing by two to average over the electron spin gives 〈|M|2〉 = 64G2
F p1 ·

p2 p3 ·p4 (the νµ’s are polarized so we don’t need to average over their spin).

At high energies we can neglect the electron and muon masses and take(
dσ

dΩ

)
cm

=
〈|M|2〉
64π2s

=
G2
F s

4π2

⇒ σ =
G2
F s

π

The cross section grows linearly with s. This is hardly surprising: the
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coupling GF has units of (energy)−2 so on dimensional grounds the cross

section must go like G2
F times something with units of (energy)2.

Although seemingly innocuous, this sort of power-law growth of a cross-

section is unacceptable. A good way to make this statement precise is to

study scattering of states with definite total angular momenta. That is, in

place of the scattering angle θ, we’ll specify the total angular momentum J .

As discussed in appendix B the partial wave decomposition of a scattering

amplitude is†

f(θ) =
1

i
√
s

∞∑
J=0

(2J + 1)PJ(cos θ) 〈f |SJ(E)|i〉 . (8.5)

Here we’re working in the center of mass frame, with energy E and angular

momentum J . PJ is a Legendre polynomial and θ is the center of mass

scattering angle. |i〉 and |f〉 are the initial and final states, normalized

to 〈i|i〉 = 〈f |f〉 = 1. SJ(E) is the S-matrix in the sector with energy E

and angular momentum J . This amplitude is related to the center-of-mass

differential cross section by (
dσ

dΩ

)
cm

= |f(θ)|2 .

The partial wave decomposition of the cross section is then

σ =

∫
dΩ |f(θ)|2 =

4π

s

∞∑
J=0

(2J + 1)
∣∣∣〈f |SJ(E)|i〉

∣∣∣2
where we used

∫
dΩPJ(cos θ)PJ ′(cos θ) = 4π

2J+1δJJ ′ . This expresses the total

cross section as a sum over partial waves, σ =
∑

J σJ where

σJ =
4π

s
(2J + 1)

∣∣∣〈f |SJ(E)|i〉
∣∣∣2 .

The S-matrix is unitary, so |f〉 and SJ(E)|i〉 are both unit vectors, and their

inner product must satisfy |〈f |SJ(E)|i〉| ≤ 1. This gives an upper bound on

the partial wave cross sections, namely

σJ ≤
4π

s
(2J + 1) .

This result is actually quite general: as discussed in appendix B, it holds for

high-energy scattering of states with arbitrary helicities.

† This formula is valid for inelastic scattering at high energies, with initial particles that are
either spinless or have identical helicities, and final particles that are either spinless or have
identical helicities. The general decomposition is given in appendix B.
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To apply this to inverse muon decay we first need the cross section for

polarized scattering νµLe
−
L → µ−LνeL. That’s easy, we just multiply our

spin-averaged cross section by 2 to undo the average over electron spins.

To find the partial wave decomposition note that the IMD cross section is

independent of θ, so only the J = 0 partial wave contributes in (8.5) and

unitarity requires

σ =
2G2

F s

π
≤ 4π

s
.

This bound is saturated when

√
s = (2π2/G2

F )1/4 = 610 GeV .

What should we make of this? In principle there are three options for

restoring unitarity.

(i) It could be that perturbation theory breaks down and strong-coupling

effects become important at this energy scale, which would just mean

our tree-level estimate for the cross section is invalid.

(ii) It could be that additional terms in the Lagrangian (operators with

dimension 8, 10, . . .) are important at this energy scale and need to

be taken into account.

(iii) It could be there are new degrees of freedom that become important

at this energy scale. With a bit of luck, the whole theory might

remain weakly coupled even at high energies.

It’s hard to say anything definite about the first two possibilities. Fortu-

nately it’s possibility #3 that turns out to be realized.

References

4-Fermi theory is discussed in section 6.1 of Quigg. There’s a brief treatment

in Cheng & Li section 11.1. The partial wave decomposition of a helicity

amplitude is given in appendix B. It’s also mentioned by Quigg on p. 95 and

by Cheng & Li on p. 343.

Exercises
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8.1 Inverse muon decay

Consider the following 4-Fermi coupling.

L = − GF√
|gV |2 + |gA|2

µ̄γλ(gV − gAγ5)νµ ν̄eγλ(1− γ5)e+ h.c.

Here gV and gA are two coupling constants (‘vector’ and ‘axial-

vector’), which can be complex in general. The standard model

values are gV = gA = 1 in which case only left-handed particles (and

their right-handed antiparticles) participate in weak interactions.

(i) Compute 〈|M|2〉 for the ‘inverse muon decay’ reactions

νµL e
− → µ−νe

νµR e
− → µ−νe

The νµ is polarized (either left-handed or right-handed), but you

should sum over the spins of all the other particles and divide by

2 to average over the electron spin. The easiest way to compute

a spin-polarized amplitude for a massless particle is probably to

insert chiral projection operators 1
2(1±γ5) in front of the νµ field,

as in Peskin and Schroeder p. 142.

(ii) Suppose the incoming νµ beam contains a fraction nL of left-

handed neutrinos and nR of right-handed neutrinos (nL+nR = 1).

What is the center-of-mass differential cross section for νµe
− →

µ−νe? You can neglect the electron mass but should keep track of

the muon mass. Express your answer in terms of θ and λ where

θ is the angle between the outgoing muon and the beam direction

and

λ =
2 Re (gV g

∗
A)

|gV |2 + |gA|2
.

See Fig. 3 in Mishra et. al., Phys. Rev. Lett. 63 (1989) 132.

8.2 Pion decay

(i) Derive the Noether currents jµaL , jµaR associated with the SU(2)L×
SU(2)R symmetry

δψL = − i
2
λaLσ

aψL δψR = − i
2
λaRσ

aψR

of the strong interactions with two flavors of massless quarks. We’ll

mostly be interested in the vector and axial-vector linear combi-

nations jµaV = jµaL + jµaR , jµaA = −jµaL + jµaR .
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(ii) Repeat part (i) for the SU(2) non-linear σ-model

L =
1

4
f2
πTr

(
∂µU

†∂µU
)

where the symmetry is

δU = − i
2
λaLσ

aU + U
i

2
λaRσ

a .

You only need to work out the symmetry currents to first order in

the pion fields πa, where U = eiπ
aσa/fπ .†

(iii) The weak interaction responsible for the decay π− → µ−ν̄µ is

Lweak = − 1√
2
GF cos θC µ̄γ

λ(1− γ5)νµ ūγλ(1− γ5)d+ h.c.

Here θC ≈ 13◦ is the ‘Cabibbo angle.’ Suppose we can identify

the symmetry currents worked out in parts (i) and (ii). Use this

to rewrite Lweak in terms of the fields µ, νµ, πa, again working to

first order in the pion fields.

(iv) If I did it right this leads to a vertex

_

µ

µν

p

π

_

GF cos θCfπγ
µ(1− γ5)pµ

Calculate the pion lifetime in terms of GF , θC , fπ, mπ, mµ. Given

fπ = 93 MeV, what’s the pion lifetime? How did you do compared

to the observed value 2.6× 10−8 sec?

(v) The decay π− → e−ν̄e only differs by replacing µ→ e, νµ → νe.

Predict the branching ratio

Γ(π− → e−ν̄e)
Γ(π− → µ−ν̄µ)

How well did you do?

† Given your expression for the currents in terms of the pion fields, the relation 〈πa(p)|jµbA (x)|0〉 =

ifπδabpµeip·x given in (5.6) follows.
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8.3 Unitarity violation in quantum gravity

Consider two distinct types of massless scalar particles A and B

which only interact gravitationally. The Feynman rules are

p

scalar propagator i
p2

k

αβ γδ graviton propagator i16πGN
k2

(
gαγgβδ + gαδgβγ − gαβgγδ

)

αβ

p

p

’

scalar – graviton vertex i
2

(
pαp
′
β + pβp

′
α − gαβ p · p′

)

Here GN = 6.7 × 10−39 GeV−2 is Newton’s constant and gαβ =

diag(+−−−) is the Minkowski metric. The vertices and propagators

are the same whether the scalar particle is of type A or type B.

(i) Compute the tree-level amplitude and center-of-mass differential

cross section for the process AA→ BB.

(ii) The partial-wave expansion of the scattering amplitude is

f(θ) =
1

i
√
s

∞∑
l=0

(2l + 1)Pl(cos θ)Sl(E)

where Pl is a Legendre polynomial. This is related to the center-

of-mass differential cross section by(
dσ

dΩ

)
cm

= |f(θ)|2 .

Compute the partial-wave S-matrix elements Sl(E). For which

values of l are they non-zero?

(iii) At what center-of-mass energy is the unitarity bound |Sl(E)| ≤
1 violated?
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9.1 Intermediate vector bosons

We’d like to regard the 4-Fermi theory of weak interactions as an effective

low-energy approximation to some more fundamental theory in which – at

an energy of order 1/
√
GF – new degrees of freedom become important and

cure the problems of 4-Fermi theory.

A good example to keep in mind is the φ2χ theory discussed in chapter

7, where exchange of a massive χ particle between φ quanta gave rise to

an effective φ4 interaction at low energies. For further inspiration recall the

QED amplitude for µ−e− → µ−e− elastic scattering.

γ
µ e

_

e
__

µ p

p p

1

3 4

2
p

_

−iM = ū(p3)(−ieQγµ)u(p1)
−igµν

(p1 − p3)2
ū(p4)(−ieQγν)u(p2)

The amplitude is built from two vector currents connected by a photon

propagator. We saw this diagram “on its side,” when we calculated the

QED cross section for e+e− → µ+µ− and obtained the well-behaved result(
dσ

dΩ

)
e+e−→µ+µ−

=
e4

64π2s

(
1 + cos2 θ

)
.

95
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This suggests that to describe inverse muon decay νµe
− → µ−νe we should

pull apart the 4-Fermi vertex and write the IMD amplitude as

_

_
p

p p

1

3 4

2
p

W

νe

νµ

µ

e

−iM = ū(p3)
(
− ig

2
√

2
γµ(1−γ5)

)
u(p1)Dµν(p1−p3)ū(p4)

(
− ig

2
√

2
γν(1−γ5)

)
u(p2)

(9.1)

In this expression g is the weak coupling constant; the factors of 1/2
√

2 are

included to match the conventions of the standard model. The two “charged

weak currents” are assumed to have a V −A form in which only left-handed

chiral spinors enter. Finally Dµν(k) is the propagator for a new degree of

freedom: an intermediate vector boson W±.

To reproduce the successes of 4-Fermi theory the W± must have some

unusual properties.

(i) It must be massive, with mW = O(1/
√
GF ), so that at energies

� mW we recover the point-like interaction of 4-Fermi theory.

(ii) It must carry ±1 unit of electric charge, so that electric charge is

conserved at each vertex in the IMD diagram.

(iii) It must have spin 1 so that it can couple to the Lorentz vector index

on the V −A currents.

9.2 Massive vector fields

At this point we need to develop the field theory of a free (non-interacting)

massive vector particle. This material can be found in Mandl & Shaw chap-

ter 11.

Let’s begin with a vector field Wµ which we’ll take to be complex since

we want to describe charged particles. The field strength of Wµ is defined

in the usual way, Gµν = ∂µWν − ∂νWµ. The Lagrangian is

L = −1

2
G∗µνG

µν +m2
WW

∗
µW

µ
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Aside from the mass term this looks a lot like a (complex version of) elec-

tromagnetism. The equations of motion from varying the action are

∂µG
µν +m2

WW
ν = 0 .

Acting on this with ∂ν implies ∂µW
µ = 0. Then ∂µG

µν = ∂µ(∂µW ν −
∂νWµ) = �W ν and the equations of motion can be summarized as(

�+m2
W

)
Wµ = 0 a set of decoupled massive wave equations . . .

∂µW
µ = 0 . . . obeying a “Lorentz gauge” condition

(When mW 6= 0 this theory does not have a gauge symmetry. The “Lorentz

gauge” condition is an equation of motion, not a gauge choice.)

There are three independent polarization vectors that satisfy the Lorentz

condition ε·k = 0 with k2 = m2
W . For a W-boson moving in the +z direction

with

kµ = (ω, 0, 0, k) ω ≡
√
k2 +m2

W

a convenient basis of polarization vectors is

ε± = 1√
2
(0, 1,±i, 0) two transverse polarizations

ε0 = 1
mW

(k, 0, 0, ω) longitudinal polarization

The transverse polarizations have helicity ±1, while the longitudinal polar-

ization has helicity 0. These obey the orthogonality / completeness relations∑
µ

εiµ
∗εj µ = −δij

∑
i

εiµε
i
ν
∗ = −gµν +

kµkν
m2
W

To get the W-boson propagator we first integrate by parts to rewrite the

Lagrangian as

L = W ∗µ OµνWν Oµν = (�+m2
W )gµν − ∂µ∂ν

Following a general rule the vector boson propagator is i times the inverse of

the operator that appears in the quadratic part of the Lagrangian: Dµν =

i(O−1)µν . To compute the inverse we go to momentum space,

Oµν(k) = (− k2 +m2
W )δµν + kµkν .

Note that, regarded as a 4 × 4 matrix, O has eigenvalue −k2 + m2
W when

it acts on any vector orthogonal to k, and eigenvalue m2
W when it acts on k



98 Intermediate vector bosons

itself. Then with the help of some projection operators

(O−1)µν =
1

−k2 +m2
W

(
δµν −

kµkν
k2

)
+

1

m2
W

kµkν
k2

=
1

−k2 +m2
W

[
δµν −

kµkν
k2

+
(−k2 +m2

W )kµkν
m2
Wk

2

]
=

1

−k2 +m2
W

[
δµν −

kµkν
m2
W

]
and the propagator is

Dµν(k) = iO−1
µν (k) =

−i(gµν − kµkν
m2
W

)

k2 −m2
W

9.3 Inverse muon decay revisited

Now that we know the W propagator, the amplitude for inverse muon decay

is

M =
g2

8
ū(p3)γµ(1− γ5)u(p1)

−gµν +
kµkν
m2
W

k2 −m2
W

ū(p4)γν(1− γ5)u(p2) .

Here k = p1 − p3. First let’s consider the low energy behavior. At small k

the factor in the middle from the W propagator reduces to gµν/m
2
W and the

amplitude becomes

M =
g2

8m2
W

ū(p3)γµ(1− γ5)u(p1)ū(p4)γµ(1− γ5)u(p2) (9.2)

This reproduces our old 4-Fermi amplitude (8.3) provided we identify

GF = g2/4
√

2m2
W . (9.3)

Now let’s see what happens at high energies. We can regard the amplitude

as a sum of two terms,M =M1 +M2, whereM1 comes from the gµν part

of the W propagator and M2 comes from the kµkν/m
2
W part of the W

propagator. Let’s look at M1 first.

M1 = − g2

8(k2 −m2
W )

ū(p3)γµ(1− γ5)u(p1)ū(p4)γµ(1− γ5)u(p2)

=
−m2

W

k2 −m2
W

· 1√
2
GF ū(p3)γµ(1− γ5)u(p1)ū(p4)γµ(1− γ5)u(p2)

This is our old 4-Fermi amplitude (8.3) times a factor −m2
W /(k

2 − m2
W ).
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The extra factor goes to one at small k and suppresses the amplitude at

large k. So far, so good. However the other contribution to the amplitude

is

M2 =
g2

8m2
W (k2 −m2

W )
ū(p3)k/(1− γ5)u(p1)ū(p4)k/(1− γ5)u(p2)

At first glance this doesn’t look suppressed at large k, but here we get lucky:

it’s not only suppressed at large k, it’s negligible compared to M1. To see

this note that

ū(p3)k/(1− γ5)u(p1) = ū(p3)(1 + γ5)p/1u(p1)− ū(p3)p/3(1− γ5)u(p1)

= −mµū(p3)(1− γ5)u(p1)

where in the second step we used the Dirac equation for the external line

factors

p/1u(p1) = 0 ū(p3)p/3 = ū(p3)mµ

(the neutrino is massless!). Likewise we have

ū(p4)k/(1− γ5)u(p2) = −meū(p4)(1 + γ5)u(p2)

which means that

M2 =
g2

8(k2 −m2
W )

memµ

m2
W

ū(p3)(1− γ5)u(p1)ū(p4)(1 + γ5)u(p2) .

So M2 is not only suppressed at large k, it’s down by a factor memµ/m
2
W

compared to M1.

To summarize, up to corrections of order memµ/m
2
W , the amplitude for

inverse muon decay is (4− Fermi) × (−m2
W /(k

2 − m2
W )). Neglecting the

electron and muon masses, the cross section is

dσ

dΩ
=

G2
Fm

4
W s

4π2(k2 −m2
W )2

=
G2
Fm

4
W s

4π2(s sin2(θ/2) +m2
W )2

Fixed-angle scattering falls off like 1/s. This is a huge improvement over

the 4-Fermi cross section, and it’s almost compatible with unitarity.†

9.4 Problems with intermediate vector bosons

So, have we succeeded in constructing a well-behaved theory of the weak

interactions? Unfortunately the answer is no. Despite the nice features

† Scattering near θ = 0 isn’t suppressed at large s, which in principle causes unitarity violations
at incredibly large energies.
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that intermediate vector bosons bring to the IMD amplitude, the theory

has other problems. A classic example is e+e− → W+W−, which in IVB

theory is given by

_p p

p p

1 2

43
νe

W
+

W
_

e+ e

−iM = v̄(p1)

(
− ig

2
√

2
γµ(1− γ5)

)
i(p/1 − p/3)

(p1 − p3)2

(
− ig

2
√

2
γν(1− γ5)

)
u(p2)εµ(p3)∗εν(p4)∗

When you work out the amplitude in detail (Quigg p. 102) you find that the

cross section grows linearly with s:

dσ

dΩ
=
G2
F s sin2 θ

128π2
.

The cross section for producing transversely-polarized W ’s is well-behaved;

it’s longitudinally-polarized W ’s that cause trouble. Another way of seeing

the difficulty with IVB theory is to note that the W propagator has bad high-

energy behavior; it isn’t suppressed at large k which leads to divergences in

loops.

At this point the situation might seem a little hopeless; we’ve fixed inverse

muon decay at the price of introducing problems somewhere else. Clearly

we need a systematic procedure for constructing theories of spin-1 particles

that are compatible with unitarity. Fortunately, such a procedure exists:

theories based on local gauge symmetry turn out to have good high-energy

behavior. More precisely, they’re free from the sort of power-law growth

in cross-sections that we encountered above.† We’ll start constructing such

theories in the next chapter.

9.5 Neutral currents

There’s one more ingredient I want to mention before we go on. We’ve spent

a lot of time on inverse muon decay, νµe
− → µ−νe.

† For more discussion of this point see Peskin & Schroeder, last paragraph of section 21.2.
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_

_

W

νe

νµ

µ

e

But what about elastic scattering νµe
− → νµe

−? Based on what we’ve said

so far we’d expect this to be a second-order process, a box diagram involving

exchange of a pair of W ’s.

W

_

νeµ
_

νµ

e
_νµ

W

e

If this is right then at energies much below mW elastic scattering should

be very suppressed (see below for an estimate). But in fact the low-energy

cross sections for IMD and elastic scattering seem to have the same energy

dependence and are roughly comparable in magnitude: measurements by

the CHARM II collaboration give†
σelastic

σIMD
≈ 0.09 .

Similar behavior is seen in neutrino – nucleon scattering, where one finds‡

Rν =
σ(νµN → νµanything)

σ(νµN → µ−anything)
≈ 0.31 .

This means we need to postulate the existence of an electrically neutral IVB,

the Z0, which can mediate these sorts of processes at tree level.

† Phys. Lett. B335 (1994) 246. The prefactor is (g2
V + g2

A + gV gA)/3 where gv = −0.035 and
gA = −0.503.
‡ CDHS collaboration, Z. Phys. C45 (1990) 361.
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Z

_
νµ

e
_

νµ

e

Let’s return to estimate the suppression factor associated with the box

diagram for elastic scattering. First let’s neglect the kµkν/m
2
W terms in the

W propagator. This gives an amplitude that, for small external momenta,

is schematically of the form

M∼ g4 ūγµ(1− γ5)u ūγµ(1− γ5)u

∫
d4k

(2π)4

1

k2(k2 −m2
W )2

.

The (Euclidean) loop integral gives (recall d4kE = −id4k, k2
E = −k2)∫

d4kE
(2π)4

1

k2
E(k2

E +m2
W )2

=
1

16π2m2
W

.

So compared to the amplitude for inverse muon decay (9.2), which is schemat-

ically of the form g2 ūγµ(1− γ5)u ūγµ(1− γ5)u/m2
W , we’d expect the elastic

scattering amplitude to be suppressed by a factor ∼ g2/16π2. The cross

section should then be suppressed by ∼ (g2/16π2)2 ∼ 10−5, where we’ve

used the value of the weak coupling constant discussed in chapter 12. The

kµkν/m
2
W terms that we neglected make a similar contribution, provided

one cuts off the loop integral at k2
E ∼ m2

W .†
This calculation illustrates a general feature, that a factor g2/16π2 is

usually associated with each additional loop in a Feynman diagram. The

factor of g2 can be understood from the topology of the diagram, while the

numerical factor 1/16π2 results from doing a typical loop integral.‡

References

Intermediate vector bosons are discussed in section 6.2 of Quigg. They’re

also mentioned briefly in section 11.1 of Cheng & Li. For a nice field theory

treatment of IVB’s see chapter 11 of Mandl & Shaw, Quantum field theory.

† A more careful procedure is to add an elementary 4-Fermi interaction to the theory and absorb
these divergences by renormalizing the 4-Fermi coupling. This behavior is typical of non-
renormalizeable theories and illustrates the difficulties with loops in IVB theory.

‡ For example, working in Euclidean space, another typical loop integral is
∫ d4p

(2π)4
1
p4

=∫ Λ
µ

2π2p3dp
(2π)4

1
p4

= 1
16π2 log Λ2

µ2 .
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Exercises

9.1 Unitarity and ABψ theory

Recall the calculation of AB → ψψ̄ scattering in the ABCψ theory

of problem A.1.

C

ψ

ψ
_

A

B

Suppose C has a very large mass. Then a low-energy observer would

interpret this scattering in terms of an elementary quartic vertex

with Feynman rule

B

ψ

ψ
_

A

iG

This rule defines ABψ theory – the “low energy effective theory” for

the underlying ABCψ.

(i) Compute the amplitude for AB → ψψ̄ scattering in ABψ theory.

There’s no need to average over spins at this stage.

(ii) Match your result to the low-energy behavior of the same am-

plitude calculated in ABCψ theory. Use this to fix the value of

the coupling G in terms of g1, g2 and mC .

(iii) Find the differential cross-section for AB → ψRψ̄R in the low

energy effective theory, where both outgoing particles are right-

handed (positive helicity). How does the cross section behave at

high energies? Which partial waves contribute? At what energy

is unitarity violated?

(iv) In the underlying ABCψ theory, how does the same cross sec-

tion behave at high energies? Is it compatible with unitarity?
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10.1 Gauge-invariant Lagrangians

After all these preliminaries we’re finally ready to write down a Lagrangian

which describes the electromagnetic and strong interactions of quarks. For

the electromagnetic interaction it’s easy: we introduce a collection of Dirac

spinor fields

qi i = u, d, s for three flavors of quarks

and couple them to electromagnetism in the standard way, via a Lagrangian

LQED =
∑
i

q̄i

[
iγµ(∂µ + ieQiAµ)−mi

]
qi −

1

4
FµνF

µν (10.1)

Here Fµν = ∂µAν−∂νAµ is the Maxwell field strength and the various quarks

have charges

Qu =
2

3
Qd = Qs = −1

3

in units of e =
√

4πα.

There’s a formal way of motivating this Lagrangian, which has the ad-

vantage of directly generalizing to the strong interactions. Start with three

free quarks, described by

Lfree = Lkinetic + Lmass

Lkinetic = Q̄iγµ∂µQ Lmass = −Q̄MQ

Q =

 u

d

s

 M =

 mu 0 0

0 md 0

0 0 ms


104



10.1 Gauge-invariant Lagrangians 105

Lkinetic has a U(3) flavor symmetry Q→ UQ which is generically broken to

U(1)3 by Lmass. Let’s focus on the particular transformation Q→ e−ieαTQ
where α is an angle that parametrizes the transformation and

T =

 2/3 0 0

0 −1/3 0

0 0 −1/3


T is a Hermitian matrix. It’s one of the generators of the unbroken U(1)3 ⊂
U(3) flavor symmetry.

Suppose we want to promote this global symmetry to a local invariance,

α 7→ α(x). We can do this by “gauging” the symmetry, namely replacing

the ordinary derivative ∂µ with a covariant derivative Dµ = ∂µ + ieAµT .

This replacement turns the free Lagrangian into

Lgauged = Q̄ (iγµDµ −M)Q .

This interacting Lagrangian has a local gauge invariance

Q(x)→ e−ieα(x)TQ(x) Aµ → Aµ + ∂µα .

To see this it’s useful to note that DµQ transforms covariantly under gauge

transformations (meaning in the same way as Q itself): that is DµQ →
e−ieα(x)TDµQ. Although this theory is perfectly gauge invariant, it lacks

kinetic terms for the gauge fields. We can remedy this by adding the (gauge-

invariant) Maxwell Lagrangian.

LMaxwell = −1

4
FµνF

µν Fµν = ∂µAν − ∂νAµ (10.2)

This takes us back to the QED Lagrangian (10.1). One says that we have

constructed this theory by “gauging a U(1) subgroup of the global symmetry

group.”

How should we describe strong interactions of quarks? Inspired by elec-

tromagnetism, let’s identify a global symmetry and gauge it. What global

symmetry should we use? Recall that quarks come in three colors, so that

each quark flavor is really a collection of three Dirac spinors.

qi =

 qi,red

qi,green

qi,blue


Focusing for the moment on a single quark flavor, this means the free quark

Lagrangian has an SU(3)color symmetry. That is,

Lfree = q̄ (iγµ∂µ −m) q
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is invariant under q → Uq where U ∈ SU(3). This symmetry is the basis for

our theory of strong interactions (QCD, for “quantum chromodynamics”).

Let’s gauge SU(3)color, following the procedure we used for electromag-

netism. We’re after a local color symmetry

q(x)→ e−igα
a(x)Taq(x)

where we’ve introduced a coupling constant g and a set of eight 3×3 traceless

Hermitian matrices T a – the generators of SU(3)color. A gauge-invariant

Lagrangian is

Lgauged = q̄ (iγµDµ −m) q

where the covariant derivative

Dµ = ∂µ + igBa
µT

a

involves a collection of eight color gauge fields Ba
µ. This Lagrangian is in-

variant under

q(x)→ U(x)q(x) U(x) = e−igα
a(x)Ta

provided the gauge fields transform according to

Bµ(x)→ U(x)Bµ(x)U †(x) +
i

g
(∂µU)U † .

Here Bµ(x) = Ba
µ(x)T a is a traceless Hermitian matrix-valued field. To

verify the invariance one should first show that under a gauge transformation

Dµq transforms covariantly, Dµq → UDµq.
To get a complete theory we need to add some gauge-invariant kinetic

terms for the fields Bµ. It’s not so obvious how to do this. The correct

Lagrangian turns out to be

LYang−Mills = −1

2
Tr (GµνG

µν)

where the field strength associated with Bµ is

Gµν = ∂µBν − ∂νBµ + ig[Bµ, Bν ]

(the last term is a matrix commutator). This generalizes the Maxwell La-

grangian (10.2) to a non-abelian gauge group. Under a gauge transformation

you can check that Gµν transforms covariantly in the adjoint representation:

Gµν → UGµνU
†. This transformation might seem surprising – in electrody-

namics we’re used to the field strength being gauge invariant – but combined

with the cyclic property of the trace it suffices to make the Yang-Mills La-

grangian gauge invariant.
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Going back to three flavors, the strong and electromagnetic interactions of

the u, d, s quarks are described by the following SU(3)×U(1) gauge theory.

L = Q̄
[
iγµ(∂µ + ieAµT + igBa

µT
a)−M

]
Q− 1

4
FµνF

µν − 1

2
Tr (GµνG

µν)

Here the U(1) generator of electromagnetism is

T =

 2/3 0 0

0 −1/3 0

0 0 −1/3


flavor

⊗ 11color

while the SU(3) color generators are really

T a = 11flavor ⊗ T acolor

and the mass matrix is

M =

 mu 0 0

0 md 0

0 0 ms


flavor

⊗ 11color .

As we discussed in chapter 6, the free quark kinetic terms actually have an

SU(3)L×SU(3)R global flavor symmetry that acts on the chiral components

of Q.

QL → (Lflavor ⊗ 11color)QL QR → (Rflavor ⊗ 11color)QR L,R ∈ SU(3)

A very nice observation: if we neglect the quark masses and electromag-

netic couplings, and take the gauge fields to be invariant, then the entire

Lagrangian is invariant under this symmetry. This is just what we needed

for our ideas about spontaneous chiral symmetry breaking by the strong

interactions to make sense!

The Feynman rules are straightforward, at least at tree level.† One con-

ventionally normalizes Tr(T aT b) = 1
2δ
ab and sets T a = 1

2λ
a; the Gell-Mann

matrices λa are the SU(3) analogs of the Pauli matrices. The Feynman rules

are

† Additional rules are needed to handle gluon loop diagrams.
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j

p

α βi quark propagator
i(p/ +m)

p2 −m2 δijδαβ

k

µ ν photon propagator
−igµν
k2

νa

k

µ b gluon propagator
−igµν
k2 δab

j

µ

α

β

i

quark – photon vertex −ieTijδαβγµ

µ a

α

β

i

j

quark – gluon vertex −igδijT aαβγµ

Here i, j = u, d, s are quark flavor labels, α, β = r, g, b are quark color labels,

a = 1, . . . , 8 is a gluon color label, and µ is a Lorentz vector index denoting

the photon or gluon polarization. Additional gluon 3-point and 4-point

couplings arise from the cubic and quartic terms in the Yang-Mills action.

ν

a

c

b

q

p

r

µ

λ

−gfabc
[
gλµ(p− q)ν + gµν(q − r)λ + gνλ(r − p)µ

]
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γ

a

b
c

dα

β

δ

−ig2
[
fabef cde(gαγgβδ − gαδgβγ)

+facef bde(gαβgγδ − gαδgγβ)

+fadef bce(gαβgδγ − gαγgδβ)
]

The SU(3) structure constants are defined by [T a, T b] = ifabcT c; they’re

given explicitly in Quigg, p. 197. In the 4-gluon vertex α, β, γ, δ denote

Lorentz vector indices – I hope that makes the structure of the vertex clearer.

10.2 Running couplings

Given these Feynman rules it’s straightforward (at least in principle) to

do perturbative QCD calculations. For example, taking both photon and

gluon exchange into account, at lowest order the quark – quark scattering

amplitude is (time runs upwards)

+ + crossed diagrams

You’ll see these diagrams on the homework.

The most interesting thing one can compute in perturbation theory is

the running coupling. It can be extracted from the behavior of scattering

amplitudes. Recall that in φ4 theory at one loop we studied the diagrams

+ + +

Evaluating these diagrams with a UV cutoff Λ, in section 7.2.1 we found the

running coupling

1

λ(Λ)
=

1

λ(µ)
− 3

16π2
log

Λ

µ
.
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The coupling goes to zero in the infrared, and diverges in the UV at a scale

Λmax = µe16π2/3λ(µ).

The analogous calculation in QED is to study e− – e− scattering at one

loop, from the diagrams

+ + · · ·

There are other one-loop diagrams that contribute to the scattering process,

but the renormalization of electric charge arises solely from the “vacuum

polarization” diagram drawn above.† As we saw in section 7.2.2 and problem

7.4, this leads to the running coupling

1

e2(Λ)
=

1

e2(µ)
− 1

6π2
log

Λ

µ
.

Qualitatively, this is pretty similar to φ4 theory: the coupling goes to zero

in the infrared, and diverges at Λmax = µe6π2/e2(µ).

In QCD quark – quark scattering arises from the diagrams

+ +

+ · · ·

Several one-loop diagrams contribute to the running coupling; not all are

shown. Summing them up leads to

1

g2(Λ)
=

1

g2(µ)
+

11Nc − 2Nf

24π2
log

Λ

µ
.

Here Nc is the number of quark colors (three, in the real world) and Nf is

the number of quark flavors (three if you count the light quarks, six if you

include c, b, t). A few comments:

† This is not to say there’s not a lot of interesting physics in the other diagrams. A detailed
discussion can be found in Sakurai, Advanced quantum mechanics, section 4-7.
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• In deriving the β-functions we neglected quark masses, so really Nf counts

the number of quarks with m� Λ. As in problem 7.4, quarks with m� Λ

don’t contribute to the running.

• To recover the QED result from QCD one should set Nc = 0 (to get rid of

the extra non-abelian interactions), Nf = 1 (since a single Dirac fermion

runs around the electron bubble), and g2 = 2e2 (compare the quark –

gluon vertex for a U(1) gauge group, where our normalizations require

T = 1/
√

2, to the quark – photon vertex).

The crucial point is that the coefficient of the logarithm on the right hand

side is positive. This means the behavior of the QCD coupling is opposite

to QED or φ4 theory: the coupling goes to zero at short distances, and

increases in the infrared. If you take the one-loop running seriously the

renormalized coupling g2(µ) diverges when

µ = ΛQCD ≡ Λe−24π2/(11Nc−2Nf )g2(Λ) .

This is known as the QCD scale. The notation ΛQCD is standard, but as

you can see it’s not the same as the UV cutoff scale Λ.

The idea is that we can take the continuum limit by sending Λ → ∞
and g2(Λ) → 0 while keeping ΛQCD fixed. In this limit we should think of

ΛQCD as the unique (dimensionful!) quantity which characterizes the strong

interactions. For example you can express the running coupling in terms of

ΛQCD.

αS(µ) ≡ g2(µ)

4π
=

6π

(11Nc − 2Nf ) log(µ/ΛQCD)

The particle data group (2002 version) gives the value ΛQCD = 216+25
−24 MeV.

To summarize our basic picture of QCD:

• It’s weakly coupled at short distances. In this regime perturbation theory

can be trusted. For example gluon exchange gives rise to a short-distance

Coulomb-like potential between quarks.

• It’s strongly coupled at long distances. In this regime non-perturbative

effects take over and give rise to phenomena such as quark confinement

and spontaneous chiral symmetry breaking. In principle quantities that

appear in the pion effective Lagrangian such as f and µ can be calculated

in terms of ΛQCD.
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9. Quantum chromodynamics 17

required, for example, to facilitate the extraction of CKM elements from measurements
of charm and bottom decay rates. See Ref. 169 for a recent review.

0

0.1

0.2

0.3

1 10 10
2

µ GeV

!
s
(µ

)

Figure 9.2: Summary of the values of αs(µ) at the values of µ where they are
measured. The lines show the central values and the ±1σ limits of our average.
The figure clearly shows the decrease in αs(µ) with increasing µ. The data are,
in increasing order of µ, τ width, Υ decays, deep inelastic scattering, e+e− event
shapes at 22 GeV from the JADE data, shapes at TRISTAN at 58 GeV, Z width,
and e+e− event shapes at 135 and 189 GeV.

9.13. Conclusions

The need for brevity has meant that many other important topics in QCD
phenomenology have had to be omitted from this review. One should mention in
particular the study of exclusive processes (form factors, elastic scattering, . . .), the
behavior of quarks and gluons in nuclei, the spin properties of the theory, and QCD
effects in hadron spectroscopy.

We have focused on those high-energy processes which currently offer the most
quantitative tests of perturbative QCD. Figure 9.1 shows the values of αs(MZ) deduced

September 8, 2004 15:07
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References

The basic material in this chapter is covered nicely in Quigg, chapter 4 and

sections 8.1 – 8.3. Griffiths chapter 9 does some tree-level calculations in

QCD. A more complete treatment can be found in Peskin & Schroeder:

sections 15.1 and 15.2 work out the Yang-Mills action, section 16.1 gives the

Feynman rules, and section 16.5 does the running coupling.

Gluon loops. Additional Feynman rules are required to compute gluon

loop diagrams. The additional rules ensure that unphysical gluon polariza-

tions do not contribute in loops. The details are worked out in Peskin &

Schroeder section 16.2.

Photon and gluon polarization sums. The completeness relation we

have been using to perform photon polarization sums,
∑

i ε
i
µε
i
ν
∗ = −gµν ,

implicitly requires a sum over four linearly independent polarization vectors

(the two physical polarizations of a photon plus two unphysical polariza-

tions). Such a sum can be used in QED: thanks to a cancellation discussed

in Peskin & Schroeder p. 159, the unphysical polarizations do not contribute

to scattering amplitudes. However the analogous cancellation does not al-

ways hold in QCD, so for gluons one should only sum over physical polariza-

tions. The appropriate completeness relation is in Cheng & Li p. 271. The

issue with gluon polarization sums is closely related to the additional rules

for gluon loops, as nicely explained by Aitchison and Hey Gauge theories in

particle physics (second edition, 1989) section 15.1.

Partons. The rules we have developed are adequate to describe the in-

teractions of quarks and gluons. However to study scattering off a physical

hadron one needs to work in terms of its constituent “partons.” The neces-

sary machinery is developed in Peskin & Schroeder chapter 17.

Exercises

10.1 Tree-level qq̄ interaction potential

(i) Compute the tree-level qq̄ → qq̄ scattering amplitude arising from

the one-photon and one-gluon exchange diagrams

+

(time runs upwards). Just write down the amplitude – you don’t
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need to average over spins. We’re assuming the quarks have dis-

tinct flavors so there’s no diagram in which the qq̄ annihilate to

an intermediate photon or gluon.

(ii) The one-photon-exchange diagram generates the usual Coulomb

potential VQED(r) = αQ1Q2/r. Comparing the normalization of

the two diagrams, what is the analogous QCD potential VQCD(r)?

(iii) Evaluate the QCD interaction potential when the qq̄ are in a

color singlet state.

10.2 Three jet production

The process e+e− → 3 jets can be thought of as a two-step process,

e+e− → γ∗ followed by γ∗ → qq̄g where γ∗ is an off-shell photon.

(i) At leading order the diagrams for γ∗ → qq̄g give

−iMγ∗→qq̄g = *

1

k
2

q

3k

q

q
_

g
γ

k

+ *

1

k
2

3k

q

q

q
_

g
γ

k

Compute 〈|Mγ∗→qq̄g|2〉. You should average over the photon spin

and sum over the spins, colors, and quark flavors in the final state.

A few tips:

• You should allow the photon to be off-shell, q2 6= 0. However

for simplicity you can take the other particles to be massless,

k2
i = 0.

• You can sum over the photon and gluon spins using†∑
polarizations

ε∗µεν = −gµν .

• To average over the photon spin you should divide your result

by 3 for the three possible polarizations of a massive vector.

• You can sum over colors using Trλaλb = 2δab.

† You can’t always perform gluon spin sums in such a simple way. See p. 113.
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• You should express your answer in terms of the kinematic vari-

ables

xi =
2ki · q
q2

.

In the center of mass frame xi is twice the energy fraction carried

by particle i, xi = 2Ei/Ecm. Note that x1 + x2 + x3 = 2.

(ii) Compute the spin-averaged |amplitude|2 for e+e− → γ∗ from

−iMe+e−→γ∗ = *

e

e+

_

γ

(iii) The spin-averaged |amplitude|2 for the whole process is

〈|M|2〉 = 〈|Me+e−→γ∗ |2〉 ·
1

q4
· 〈|Mγ∗→qq̄g|2〉

where the 1/q4 in the middle is from the intermediate photon

propagator.† Plug this into the cross-section formula

dσ

dx1dx2
=

1

256π3
〈|M|2〉

and find the differential cross-section for 3-jet events. You should

reproduce Peskin & Schroeder (17.18).

† For a justification of this formula, including the factor of 3 for averaging over photon spins, see
Peskin & Schroeder p. 261.
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The only well-behaved theories of spin–1 particles are thought to be gauge

theories. So we’d like to fit our IVB theory of weak interactions into the

gauge theory framework. In trying to do this, there are a couple of obstacles.

• The Lagrangian for free W -bosons is

L = −1

2
G∗µνG

µν +m2
WW

∗
µW

µ Gµν = ∂µWν − ∂νWµ .

However the mass term explicitly breaks the only real candidate for a

gauge symmetry, namely invariance under Wµ →Wµ + ∂µα.

• We know that W -bosons are charged, and should therefore couple to the

photon.

γ

W +

W
_

This sounds like the sort of gauge boson self-interactions one has in non-

abelian gauge theory. So it seems reasonable to look for an SU(2) (say)

Yang-Mills theory of weak interactions. To match IVB theory we expect

to find vertices
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µ

W

ν
e

e

W

ν

µ

This suggests that we should group leptons and neutrinos into doublets

under the gauge group.†(
νe
e

) (
νµ
µ

)
SU(2) doublets

But it seems silly to group leptons and neutrinos in this way: they’re “ob-

viously” not related by any type of symmetry, let alone gauge symmetry

(they have different masses, charges, . . .).

To write a gauge theory for the weak interactions we need a way of disguis-

ing the underlying gauge symmetry – the Lagrangian should be invariant,

but the symmetry shouldn’t be manifest in the particle spectrum. We’re

going to spontaneously break gauge invariance!

11.1 Abelian Higgs model

To illustrate the basic consequences of spontaneously breaking gauge invari-

ance, let’s return to the model we used in chapter 5 to study spontaneous

breaking of a continuous global symmetry.

L =
1

2
∂µ~φ · ∂µ~φ−

1

2
µ2|~φ|2 − 1

4
λ|~φ|4

= ∂µφ
∗∂µφ− µ2φ∗φ− λ(φ∗φ)2

In the first line we’re working in terms of a real two component field ~φ =(
φ1

φ2

)
, in the second line we introduced the complex combination φ = 1√

2
(φ1+

iφ2). Let’s gauge the global U(1) symmetry φ→ eiθφ. Following the usual

procedure we define a covariant derivative Dµφ = ∂µφ + ieAµφ. Replacing

∂µ → Dµ and adding a Maxwell term gives a Lagrangian

L = Dµφ∗Dµφ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν

† This discussion is just to illustrate the idea; when we get to the standard model we’ll see that
the actual gauge structure is somewhat different. Also the choice of SU(2) is just for simplicity
– we could use a larger group and put more, possibly undiscovered, particles into the multiplets.
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which is invariant under gauge transformations

φ→ e−ieα(x)φ Aµ → Aµ + ∂µα .

If µ2 > 0 we have the usual situation: a massless photon coupled to a

complex scalar field with quartic self-interactions. What happens for µ2 < 0?

In this case the potential has a circle of degenerate minima, located at

φ∗φ = −µ2/2λ, phase of φ arbitrary .

Clearly something interesting is going to happen, because these vacua aren’t

really distinct: they’re related by gauge transformations!

To see what’s going on let’s take a pedestrian approach, and expand about

one of the minima. Without loss of generality we choose the minimum where

φ is real and positive, and set φ = 1√
2
(φ0 +ρ)eiθ. Here ρ and θ are real scalar

fields and φ0 =
√
−µ2/λ. Then

∂µφ =
1√
2
∂µρe

iθ +
1√
2

(φ0 + ρ)eiθi∂µθ

ieAµφ =
1√
2

(φ0 + ρ)eiθieAµ

Dµφ =
1√
2
eiθ
(
∂µρ+ i(φ0 + ρ)(∂µθ + eAµ)

)
and the Lagrangian becomes

L =
1

2
∂µρ∂

µρ+
1

2
(φ0 + ρ)2(∂µθ + eAµ)(∂µθ + eAµ)

−1

2
µ2(φ0 + ρ)2 − 1

4
λ(φ0 + ρ)4 − 1

4
FµνF

µν

This looks awfully complicated. To get a handle on what’s going on let’s

expand to quadratic order in the fields, since we can identify the spectrum

of particle masses by studying small oscillations about the minimum.

L =
1

2
∂µρ∂

µρ+
1

2
φ2

0(∂µθ + eAµ)(∂µθ + eAµ)− 1

4
FµνF

µν

+ const.+ µ2ρ2 + cubic, quartic interaction terms (11.1)

The field ρ has a familiar mass, m2
ρ = −2µ2. The field θ looks massless.

That’s no surprise, since we’d expect θ to be the Goldstone boson associated

with spontaneously breaking the U(1) symmetry. Expanding the terms in

parenthesis it looks like there’s a mass term for Aµ, but it also looks like

there are Aµ∂
µθ cross-terms which give rise to mixing between Aµ and θ.

In terms of diagrams there’s a vertex
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θ A

To understand what’s going on, recall the gauge symmetry

φ→ e−ieαφ Aµ → Aµ + ∂µα .

In terms of ρ and θ this becomes

ρ invariant θ → θ − eα Aµ → Aµ + ∂µα .

Let’s choose α(x) = 1
eθ(x). In this so-called unitary gauge we have θ = 0.

The Lagrangian in unitary gauge is just given by setting θ = 0 in (11.1).

Dropping a constant

Lunitary =
1

2
∂µρ∂

µρ+ µ2ρ2 − 1

4
FµνF

µν +
1

2
e2φ2

0AµA
µ

+ cubic, quartic interaction terms . (11.2)

We ended up with a massive scalar field ρ coupled to a massive vector field

Aµ, and the would-be Goldstone boson θ has disappeared! This is known as

the Higgs mechanism. We can read off the masses

m2
ρ = −2µ2 m2

A = e2φ2
0 .

It’s interesting to count the degrees of freedom in the two phases,

µ2 > 0: two real scalars

massless photon (two polarizations)

µ2 < 0: one real scalar

massive photon (three polarizations)

In both cases there are a total of four degrees of freedom. A few comments:

• Due to the photon mass term, the Lagrangian (11.2) is not manifestly

gauge invariant. But that’s perfectly okay because Lunitary is written in a

particular gauge.

• Spontaneously broken gauge theories are renormalizable. This is hard to

see in unitary gauge. It can be shown by working in a different class of

gauges known as Rξ gauges. See Peskin & Schroeder section 21.1.

• A related claim is that spontaneously broken gauge theories have well-

behaved scattering amplitudes. In the abelian Higgs model a scattering

process like φφ → AA should be compatible with unitarity. This will be

discussed in the context of the standard model in section 14.1.
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• In a very precise way one can identify the extra longitudinal polarization

of the vector boson in the Higgs phase with the “eaten” Goldstone boson.

See Peskin & Schroeder section 21.2.

• We’ve spontaneously broken an abelian gauge symmetry. The Higgs mech-

anism has a straightforward generalization to Yang-Mills theory, which

we’ll see when we construct the standard model.

References

The abelian Higgs model is discussed in Quigg section 5.3.

Exercises

11.1 Superconductivity

Consider the abelian Higgs model at low energies, where we can

ignore radial fluctuations in the Higgs field. In unitary gauge we set

φ = φ0/
√

2 and the Lagrangian reduces to

L = −1

4
FµνF

µν +
1

2
e2φ2

0AµA
µ .

This is the free massive vector field discussed in section 9.2. It turns

out to describe superconductivity.

(i) Compare the vector field equations of motion to Maxwell’s equa-

tions ∂µF
µν = jν and express the current jµ in terms of Aµ. This

is known as the London equation.

(ii) Consider the following ansatz for a static solution to the equa-

tions of motion.

Aµ = (V,A) V (t,x) = 0 A(t,x) = ae−k·x

Here a and k are constant vectors. Show that this ansatz satisfies

the equations of motion provided |k|2 = e2φ2
0 and a · k = 0.

(iii) Compute the electric and magnetic fields, and the current and

charge densities, associated with this solution. (Recall E = −∇V−
∂0A, B = ∇×A, jµ = (ρ, j).)

Comments: this exercise shows that spontaneously breaking an abelian

gauge symmetry gives rise to superconductivity. Your solution illus-

trates the Meissner effect, that magnetic fields decay exponentially

in a superconductor. The current also decays exponentially, showing
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that currents in a superconductor are carried near the surface. Fi-

nally the resistance vanishes since we have a current with no electric

field! (Recall Ohm’s law J = σE where σ is the conductivity.)
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So far we’ve been taking a quasi-historical approach to the subject, con-

structing theories from the bottom up. Now we’re going to switch to a

top-down approach and derive the standard model from a set of postulates.

We’ll first discuss the electroweak interactions of a single generation of lep-

tons, then treat the electroweak interactions of a single generation of quarks.

Finally we’ll put it all together in a 3-generation standard model.

12.1 Electroweak interactions of leptons

12.1.1 The Lagrangian

The first order of business is to postulate a gauge group. To accommodate

W+,W−, Z, γ we need a group with four generators. We’ll take the gauge

group to be

SU(2)L × U(1)Y .

SU(2)L is only going to couple to left-handed spinors (hence the subscript

L), while U(1)Y is a “hypercharge” U(1) gauge symmetry that should not

be confused with the gauge group of electromagnetism. We’ll see how elec-

tromagnetism emerges later on.

Next we need to postulate the matter content. At this point we’ll focus on

a single generation of leptons (the electron and the electron neutrino). We’ll

treat the left- and right-handed parts of the fields separately, and assign

them the SU(2)L × U(1)Y quantum numbers

L =

(
ν

e

)
L

SU(2)L doublet with hypercharge Y = −1

R = eR SU(2)L singlet with hypercharge Y = −2

122
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Just to clarify the notation, this means the SU(2)L generators T aL are

T aL =

{
σa/2 when acting on L

0 when acting on R

while the hypercharge generator acts according to

Y L = −L Y R = −2R .

Furthermore eR is a right-handed Dirac spinor (that is, a Dirac spinor that

is only non-zero in its bottom two components), while νL and eL are left-

handed Dirac spinors. Note that the left- and right-handed spinors are

assigned different U(1)Y as well as SU(2)L quantum numbers. Also note

that we haven’t introduced a right-handed neutrino νR.

We need a mechanism for spontaneously breaking SU(2)L×U(1)Y down to

the U(1) gauge group of electromagnetism. The minimal way to accomplish

this is to introduce a Higgs doublet

φ =

(
φ+

φ0

)
SU(2)L doublet with hypercharge Y = +1.

Here φ+ and φ0 are complex scalar fields; as we’ll see the superscripts in-

dicate their electric charges. The standard model is defined as the most

general renormalizable theory with these gauge symmetries and this matter

content.†
It’s straightforward to write down the standard model Lagrangian; it’s

the most general Lagrangian with operators up to dimension four. It’s a

sum of four terms,

LSM = LDirac + LYang−Mills + LHiggs + LYukawa .

LDirac contains gauge-invariant kinetic terms for the fermions,

LDirac = L̄iγµDµL+ R̄iγµDµR

= L̄iγµ
(
∂µ +

ig

2
W a
µσ

a +
ig′

2
BµY

)
L+ R̄iγµ

(
∂µ +

ig′

2
BµY

)
R .

In the second line we’ve written out the covariant derivatives explicitly.

W a
µ are the SU(2)L gauge fields, with generators T aL and coupling constant

g. Also Bµ is the hypercharge gauge field, with generator Y and coupling

constant g′/2.‡
† There’s no real reason to insist on renormalizability, and we will explore what happens when

you add higher-dimension operators to the standard model Lagrangian. Also it might be worth
pointing out something we didn’t postulate, namely lepton number conservation. As we’ll see,
lepton number is conserved due to an “accidental symmetry.”
‡ The peculiar normalization of g′ is chosen for later convenience.
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LYang−Mills contains the gauge kinetic terms,

LYang−Mills = −1

2
Tr (WµνW

µν)− 1

4
BµνB

µν

where

Wµν =
1

2
W a
µνσ

a = ∂µWν − ∂νWµ + ig[Wµ,Wν ]

is the SU(2)L field strength, built from the gauge fields Wµ = 1
2W

a
µσ

a, and

Bµν = ∂µBν − ∂νBµ

is the U(1)Y field strength.

LHiggs includes gauge-covariant kinetic terms plus a potential for φ.

LHiggs = Dµφ†Dµφ+ µ2φ†φ− λ(φ†φ)2

Here Dµφ = ∂µφ+ ig
2 W

a
µσ

aφ+ ig′

2 BµY φ. We’ll assume that µ2 > 0 so that

φ acquires a vev.

There’s one more term we can write down. Note that φ†L is an SU(2)L
singlet with hypercharge Y = −1 − 1 = −2, while R̄ is an SU(2)L singlet

with hypercharge Y = +2. So we can write an invariant

LYukawa = −λeR̄φ†L+ c.c.

= −λe(R̄φ†L+ L̄φR)

Here λe is the electron Yukawa coupling (not to be confused with the Higgs

self-coupling λ). If necessary we can redefine L and R by independent phases

R→ eiθR, L→ eiφL to make λe real and positive.

12.1.2 Mass spectrum and interactions

The model we’ve written down has an obvious phenomenological difficulty:

the electron and all three W bosons seem to be massless.† Remarkably, the

problem is cured by symmetry breaking. The Higgs potential is minimized

when φ†φ = µ2/2λ. Under an SU(2)L × U(1)Y gauge transformation we

have

φ→ e−igα
a(x)TaLe−i

g′
2
α(x)Y φ .

† Glashow, 1961: “It is a stumbling block we must overlook.” I would have given up, he got the
Nobel prize.
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As far as the Higgs is concerned this is a U(2) transformation which can be

used to put the expectation value into the standard form

〈0|φ|0〉 =

(
0

v/
√

2

)
(12.1)

where the Higgs vev v ≡
√
µ2/λ. Now, what’s the symmetry breaking

pattern? We need to check which generators annihilate the vacuum:

σ1〈φ〉 =

(
0 1

1 0

)(
0

v/
√

2

)
=

(
v/
√

2

0

)
6= 0

σ2〈φ〉 =

(
0 −i
i 0

)(
0

v/
√

2

)
=

(
−iv/

√
2

0

)
6= 0

σ3〈φ〉 =

(
1 0

0 −1

)(
0

v/
√

2

)
=

(
0

−v/
√

2

)
6= 0

Y 〈φ〉 = 〈φ〉 =

(
0

v/
√

2

)
6= 0

It might look like the gauge group is completely broken, but in fact there’s

one linear combination of generators which leaves the vacuum invariant,

namely Q ≡ T 3
L + 1

2Y .

acting on φ: Q =
1

2
σ3 +

1

2
(+1) =

(
1 0

0 0

)
⇒ Q〈φ〉 = 0

Q generates an unbroken U(1) subgroup of SU(2)L × U(1)Y , which we’ll

identify with the gauge group of electromagnetism. That is, we’ll identify

the eigenvalue of Q with electric charge.

To see that this makes sense, let’s see how Q acts on our fields. We just

have to keep in mind that T 3
L = 1

2σ
3 when acting on a left-handed doublet,

while T 3
L = 0 when acting on a singlet.

acting on L: Q = 1
2σ

3 + 1
2(−1) =

(
0 0

0 −1

)
matches L =

(
ν

e

)
L

acting on R: Q = 0 + 1
2(−2) = −1 matches R = eR

acting on φ: Q = 1
2σ

3 + 1
2(+1) =

(
1 0

0 0

)
matches φ =

(
φ+

φ0

)
L

A few comments are in order.
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(i) We got the expected electric charges for our fermions. This is no

miracle: the hypercharge assignments were chosen to make this work.

(ii) A gauge-invariant statement is that there is a negatively-charged left-

handed spinor in the spectrum. Of course we identify this spinor with

eL. However the fact that eL appears in the bottom component of a

doublet is connected to our gauge choice (12.1). If we made a different

gauge choice we’d have to change notation, as setting L =
(
ν
e

)
L

would

no longer be appropriate.

What about the spectrum of masses? As usual, we expand about our

choice of vacuum (12.1), setting†

φ =

(
0

1√
2
(v +H(x))

)
.

Here H(x) is a real scalar field, the physical Higgs field. When we plug this

into the Yukawa Lagrangian we find

LYukawa = −λe(R̄φ†L+ L̄φR)

= −λe
[
ēR

(
0 1√

2
(v +H)

)( νL
eL

)
+
(
ν̄L ēL

)( 0
1√
2
(v +H)

)
eR

]

= − λe√
2

(v +H)(ēReL + ēLeR)

= − λe√
2

(v +H)ēe .

In the last line we assembled eL and eR into a single Dirac spinor e. This

gives the electron (but not the neutrino!) a mass,

me =
λev√

2
,

as well as a Yukawa coupling to the Higgs field:

H

e

e

−iλe√
2

† This is no loss of generality, as writing φ in this way defines our choice of gauge for the broken
symmetry generators. It’s the standard model analog of the unitary gauge we adopted in
section 11.1.
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Next we look at the Higgs Lagrangian,

LHiggs = Dµφ†Dµφ+ µ2φ†φ− λ(φ†φ)2

where

Dµφ = ∂µ

(
0

1√
2
(v +H)

)
+
ig

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)(
0

1√
2
(v +H)

)

+
ig′

2
Bµ

(
0

1√
2
(v +H)

)

=
1√
2

(
igv
2

(
W 1
µ − iW 2

µ

)
∂µH + iv

2

(
g′Bµ − gW 3

µ

) )+ (terms quadratic in fields)

This means that

LHiggs =
1

2
∂µH∂

µH +
1

8
g2v2

∣∣W 1
µ − iW 2

µ

∣∣2 +
1

8
v2
(
g′Bµ − gW 3

µ

)2 − µ2H2

+(interaction terms) .

Defining the linear combinations

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
Zµ = −

g′Bµ − gW 3
µ√

g2 + g′2

Aµ =
gBµ + g′W 3

µ√
g2 + g′2

we have

LHiggs =
1

2
∂µH∂

µH−µ2H2+
1

4
g2v2W+

µ W
µ−+

1

8
(g2+g′2)v2ZµZ

µ+interactions

and we read off the masses

m2
H = 2µ2

m2
W =

1

4
g2v2 (12.2)

m2
Z =

1

4
(g2 + g′2)v2

m2
A = 0

We have a massless photon (as required by the unbroken electromagnetic

U(1)), plus a massive Higgs scalar and a collection of massive intermediate

vector bosons! Expanding LHiggs beyond quadratic order, one finds a slew
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of interactions between the Higgs scalar and W and Z bosons; the Feynman

rules are given in appendix E.

At this point it’s convenient to introduce some standard notation. In place

of the SU(2)L×U(1)Y gauge couplings g, g′ we’ll often work in terms of the

electromagnetic coupling e and the weak mixing angle θW , 0 ≤ θW ≤ π/2,

defined by

e =
gg′√
g2 + g′2

cos θW = g/
√
g2 + g′2

sin θW = g′/
√
g2 + g′2

I also like introducing the Z coupling, defined by

gZ =
√
g2 + g′2 .

In terms of these quantities note that

Aµ = cos θWBµ + sin θWW
3
µ (12.3)

Zµ = − sin θWBµ + cos θWW
3
µ

while the Z mass is

m2
Z =

1

4
g2
Zv

2 .

Now let’s consider the Yang-Mills part of the action. Expanding in powers

of the fields

LYang−Mills = −1

2
Tr (WµνW

µν)− 1

4
BµνB

µν

= −1

4
W a
µνW

µνa − 1

4
BµνB

µν

= −1

4

(
∂µW

a
ν − ∂νW a

µ

)
(∂µW νa − ∂νWµa)− 1

4
(∂µBν − ∂νBµ) (∂µBν − ∂νBµ)

+(interaction terms)

The quadratic terms have an SO(4) symmetry acting on (W 1
µ ,W

2
µ ,W

3
µ , Bµ).

So the SO(2) rotation (12.3) which mixes W 3
µ with Bµ just gives canonical

kinetic terms for the fields W±µ , Zµ, Aµ. (We implicitly assumed this was

the case when we read off the masses (12.2).) Expanding beyond quadratic

order one finds a slew of gauge boson self-couplings: see appendix E for the

Feynman rules.
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Finally we consider the Dirac part of the action,

LDirac = L̄iγµ
(
∂µ +

ig

2
W a
µσ

a +
ig′

2
BµY

)
L+ R̄iγµ

(
∂µ +

ig′

2
BµY

)
R .

This gives the fermions canonical kinetic terms, plus couplings to the gauge

bosons

LDirac = · · · − gjµaL W a
µ −

1

2
g′jµYBµ

where the SU(2)L and hypercharge currents are

jµaL = L̄γµT aL with T a =
1

2
σa

jµY = L̄γµY L+ R̄γµY R

In terms of W± = 1√
2

(
W 1
µ ∓ iW 2

µ

)
this gives the charged-current couplings

LW±Dirac = −gjµ1
L W 1

µ − gjµ2
L W 2

µ

= − g√
2

(
(jµ1
L + ijµ2

L )W+
µ + (jµ1

L − ij
µ2
L )W−µ

)
= − g√

2

(
L̄γµσ+LW+

µ + L̄γµσ−LW−µ
)

= − g

2
√

2

(
ν̄γµ(1− γ5)eW+

µ + ēγµ(1− γ5)νW−µ
)

where in the third line σ+ =
(

0
0

1
0

)
, σ− =

(
0
1

0
0

)
. These are exactly the cou-

plings that appeared in our old IVB amplitude (9.1)! Finally the couplings

to γ, Z are given by

Lγ,ZDirac = −gjµ3
L W 3

µ −
1

2
g′jµYBµ

= −
(
g cos θW j

µ3
L −

1

2
g′ sin θW j

µ
Y

)
Zµ −

(
g sin θW j

µ3
L +

1

2
g′ cos θW j

µ
Y

)
Aµ

= −gZ
(

cos2 θW j
µ3
L −

1

2
sin2 θW j

µ
Y

)
Zµ − e

(
jµ3
L +

1

2
jµY

)
Aµ

It’s convenient to eliminate the hypercharge current jµY in favor of the elec-

tromagnetic current jµQ, using the definition jµQ = jµ3
L + 1

2j
µ
Y . This leads

to

Lγ,ZDirac = −gZ
(
jµ3
L − sin2 θW j

µ
Q

)
Zµ − ejµQAµ .

As advertised, the photon indeed couples to the vector-like† electromagnetic

current with coupling constant e. Something like this was guaranteed to

† meaning the left- and right-handed part of the electron have the same electric charge
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happen – the massless gauge field Aµ must couple to the unbroken generator

Q. One can write out the couplings a bit more explicitly in terms of a sum

over fermions ψi, i = ν, e:

Lγ,ZDirac = −e
∑
i

ψ̄iγ
µQiψiAµ − gZ

∑
i

ψ̄iγ
µ

(
1

2
(1− γ5)T 3

Li − sin2 θWQi

)
ψiZµ

= −e
∑
i

ψ̄iγ
µQiψiAµ −

1

2
gZ
∑
i

ψ̄i
(
cV iγ

µ − cAiγµγ5
)
ψiZµ

where the vector and axial-vector couplings for each fermion are defined by

cV = T 3
L − 2 sin2 θWQ cA = T 3

L .

Here T 3
L is the eigenvalue of 1

2σ
3 acting on the left-handed part of the field

and Q is the electric charge of the field. So for example the electron has

cV e = −1

2
− 2 sin2 θW (−1) = −1

2
+ 2 sin2 θW

cAe = −1

2

while the neutrino has

cV ν = cAν =
1

2
.

The Feynman rules from LDirac can be found in appendix E.

12.1.3 Standard model parameters

Let’s look at the parameters which appear in the standard model. With one

generation of leptons there are only five parameters:

• Two gauge couplings g, g′ (or equivalently the electric charge e = gg′/
√
g2 + g′2

and the weak mixing angle tan θW = g′/g).

• Two parameters in the Higgs potential µ, λ (or equivalently the Higgs

mass mH =
√

2µ and Higgs vev v =
√
µ2/λ).

• The electron Yukawa coupling λe (or equivalently the electron mass me =

λev/
√

2).

What do we know about the values of these parameters?

• The electric charge is known, of course: e2/4π = 1/137.
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• The weak mixing angle is determined by the ratio of the W and Z masses,

sin2 θW = 1−cos2 θW = 1− g2

g2 + g′2
= 1−m

2
W

m2
Z

= 1−
(

80.4 GeV

91.2 GeV

)2

= 0.223 .

• To get the Higgs vev recall our old determination (9.3) of the Fermi con-

stant in IVB theory,

GF =
g2

4
√

2m2
W

=
1√
2v2

⇒ v =
1(√

2GF
)1/2 = 2−1/4(1.17× 10−5 GeV−2)−1/2 = 246 GeV .

It’s kind of remarkable that the muon lifetime directly measures the Higgs

vev.

• The electron mass determines the Yukawa coupling

λe =

√
2me

v
=

√
2× 0.511 MeV

246 GeV
= 3× 10−6 .

One of the mysteries of the standard model is why the electron Yukawa

is so small.

• The Higgs mass is the one parameter which has not been measured. As-

suming the minimal standard model Higgs exists we only have limits on

its mass. There’s a lower limit

mH > 114.4 GeV at 95% confidence

from a direct search at LEP,† and an upper limit

mH < 219 GeV at 95% confidence

from a global fit to electroweak observables.‡

12.2 Electroweak interactions of quarks

To describe the electroweak interactions of a single generation of quarks

the main challenge is to give a mass to the up quark. This is easier than

one might have thought. We introduce left- and right-handed up and down

quarks and assign them the SU(2)L × U(1)Y quantum numbers

† hep-ex/0306033
‡ hep-ex/0511027 p. 133. Also see table 10.2, but beware the large error bars.
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Q =

(
u

d

)
L

SU(2)L doublet with hypercharge Y = 1/3

uR SU(2)L singlet with hypercharge Y = 4/3

dR SU(2)L singlet with hypercharge Y = −2/3

The hypercharges are chosen so that Q = T 3
L + 1

2Y gives the quarks the

correct electric charges. To break electroweak symmetry we have the Higgs

doublet φ with hypercharge +1. But we can also define

φ̃ = εφ∗

where ε = ( 0
−1

1
0 ). Note that φ̃ is an SU(2)L doublet with hypercharge −1.†

This lets us build some invariants

φdR SU(2)L doublet with Y = 1/3 ⇒ Q̄φdR invariant

φ̃uR SU(2)L doublet with Y = 1/3 ⇒ Q̄φ̃uR invariant

(There is no analog of the second invariant in the lepton sector, just be-

cause we didn’t introduce a right-handed neutrino.) The general Yukawa

Lagrangian is

LYukawa = −λdQ̄φdR − λuQ̄φ̃uR + c.c.

Here λd, λu are independent Yukawa couplings for the up and down quarks.

Plugging in the Higgs vev this becomes

LYukawa = −λd
(
ūL d̄L

)( 0
1√
2
(v +H)

)
dR − λu

(
ūL d̄L

)( 1√
2
(v +H)

0

)
uR + c.c.

= − 1√
2
λd(v +H)(d̄LdR + d̄RdL)− 1√

2
λu(v +H)(ūLuR + ūRuL)

= − 1√
2
λd(v +H)d̄d− 1√

2
λu(v +H)ūu

In the last line we assembled the chiral components uL, uR and dL, dR into

Dirac spinors u and d. We read off the masses

mu =
λuv√

2
md =

λdv√
2
.

There’s also a Yukawa coupling to the Higgs; the Feynman rule is in ap-

pendix E. In a way we’re fortunate here – the hypercharge assignments are

such that the same Higgs doublet which gives a mass to the electron can

also be used to give a mass to the up and down quarks.

† In SU(2) index notation φ̃i = εijφj = εij
(
φj
)∗

. The hypercharge changes sign due to the
complex conjugation.
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12.3 Multiple generations

Now let’s write the standard model with three generations of quarks and

leptons. It’s basically a matter of sprinkling generation indices i, j = 1, 2, 3

on our quark and lepton fields. Including color for completeness, the gauge

quantum numbers are

SU(3)C × SU(2)L × U(1)Y
field quantum numbers

left-handed leptons Li =
( νLi
eLi

)
(1,2,−1)

right-handed leptons eRi (1,1,−2)

left-handed quarks Qi =
( uLi
dLi

)
(3,2, 1/3)

right-handed up-type quarks uRi (3,1, 4/3)

right-handed down-type quarks dRi (3,1,−2/3)

The standard model Lagrangian is written in appendix E. The main new

wrinkle is that the Yukawa couplings get promoted to 3×3 complex matrices

Λeij ,Λ
d
ij ,Λ

u
ij .

LYukawa = −ΛeijL̄iφeRj − ΛdijQ̄iφdRj − ΛuijQ̄iφ̃uRj + c.c.

= −L̄Λeφe− Q̄Λdφd− Q̄Λuφ̃u+ c.c.

In the second line we adopted matrix notation and suppressed the generation

indices as well as the subscripts R on the right-handed fields.

We’d like to diagonalize the fermion mass matrices. To do this we use

the fact that a general complex matrix can be diagonalized by a bi-unitary

transformation,

Λ = ULλU
†
R

where UL and UR are unitary and λ is a diagonal matrix with entries that

are real and non-negative.† Then

LYukawa = −L̄U eLλeU eR†φe− Q̄UdLλdUdR†φd− Q̄UuLλuUuR†φ̃u+ c.c.

Now let’s redefine our fermion fields

L→ U eLL

† Proof: Λ†Λ is Hermitian with non-negative eigenvalues, so Λ†Λ = URλ
2U†R for some unitary

matrix UR and some diagonal, real, non-negative matrix λ. Then Λ†Λ =
(
λU†R

)† (
λU†R

)
⇒

Λ = ULλU
†
R for some unitary UL.
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e→ U eRe

Q =

(
uL
dL

)
→
(
UuL 0

0 UdL

)
Q

d→ UdRd

u→ UuRu

Note that we’re transforming the up-type and down-type components of Q

differently. Keeping in mind that with our gauge choice only one component

of the Higgs doublet is non-zero, this transformation makes the Yukawa

Lagrangian flavor-diagonal.

LYukawa → −L̄λeφe− Q̄λdφd− Q̄λuφ̃u+ c.c.

So in terms of these redefined fermions we have diagonal mass matrices and

flavor-diagonal couplings to the Higgs. What happens to the rest of the

standard model Lagrangian? The transformation doesn’t affect the Higgs

or Yang-Mills sectors, of course. And the Dirac Lagrangian

LDirac = L̄iγµDµL+ ēiγµDµe+ Q̄iγµDµQ+ ūiγµDµu+ d̄iγµDµd

is invariant when L, e, u, d are multiplied by unitary matrices, so terms in-

volving those fields aren’t affected. The only terms in LDirac that are affected

involve Q. Writing out the SU(2)L part of the covariant derivative explicitly

LDirac = · · ·+ Q̄iγµDµQ

→ · · ·+ Q̄iγµ
(
UuL
† 0

0 UdL
†

)[
∂µ + igsGµ +

ig

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
+
ig′

2
BµY

](
UuL 0

0 UdL

)
Q

= · · ·+ Q̄iγµ
[
∂µ + igsGµ +

ig

2

(
W 3
µ (W 1

µ − iW 2
µ)UuL

†UdL
(W 1

µ + iW 2
µ)UdL

†UuL −W 3
µ

)
+
ig′

2
BµY

]
Q

So in fact the only place the transformation shows up is in the quark – quark

– W± couplings.

LqqW±Dirac = −g
2

(
ūL d̄L

)
γµ
(

0 (W 1
µ − iW 2

µ)UuL
†UdL

(W 1
µ + iW 2

µ)UdL
†UuL 0

)(
uL
dL

)
= − g

2
√

2
ūγµ(1− γ5)W+

µ V d−
g

2
√

2
d̄γµ(1− γ5)W−µ V

†u

Here V ≡ UuL
†UdL is the CKM matrix. It’s a 3 × 3 unitary matrix that

governs intergenerational mixing in charged-current weak interactions.† The

Feynman rules are

† One of the peculiar things about the standard model is that – for no particularly good reason
– the weak neutral current is flavor-diagonal.
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j

W+

u

d

i

− ig

2
√

2
γµ
(
1− γ5

)
Vij

j

W
_

d

u

i

− ig

2
√

2
γµ
(
1− γ5

)
(V †)ij

This leads to flavor-changing processes such as the decay K− → µ−ν̄µ,

K−


s

W
_

µ
_

νµ
_

_
u

where the s→ uW− vertex is proportional to Vus.

One last thing – how many parameters appear in the CKM matrix? As

a 3× 3 unitary matrix it has nine real parameters, which you should think

of as six complex phases on top of the three real angles that characterize

a 3 × 3 orthogonal matrix. However not all nine parameters are physical.

We are still free to redefine the phases of our quark fields, ui → eiθiui,

di → eiφidi since this preserves the fact that we’ve diagonalized the Yukawa

couplings. Under this transformation Vij → e−i(θi−φj)Vij . In this way we

can remove five complex phases from the CKM matrix (the overall quark

phase corresponding to baryon number conservation leaves the CKM matrix

invariant). So we’re left with three angles and 6 − 5 = 1 complex phase.

The three angles characterize the strength of intergenerational mixing by the

weak interactions, while the complex phase is responsible for CP violation.

12.4 Some sample calculations

We’ll conclude by discussing a few calculations in the standard model: decay

of the Z, e+e− annihilation near the Z pole, Higgs production and decay.
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12.4.1 Decay of the Z

The Z decays to a fermion – antifermion pair, via the tree-level diagram

Z

1

p2

f

f
_

k
p

The amplitude is easy to write down.

−iM = ū(p1)

(
− igZ

2
γµ
(
cV − cAγ5

))
v(p2)εµ

Summing over the spins in the final state, and neglecting all fermion masses

for simplicity, we have∑
final spins

|M|2 =
1

4
g2
ZTr

(
γµ(cV − cAγ5)p/2γ

ν(cV − cAγ5)p/1

)
εµε
∗
ν

=
1

4
g2
ZTr

(
γµp/2γ

νp/1(c2
V + c2

A + 2cV cAγ
5)
)
εµε
∗
ν

We now average over Z polarizations, using
∑
εµε
∗
ν = −gµν +

kµkν
m2
Z

, and

evaluate the Dirac traces, using

Tr
(
γµγλγνγσ

)
= 4

(
gµλgνσ − gµνgλσ + gµσgλν

)
Tr
(
γµγλγνγσγ5

)
= 4iεµλνσ

Traces involving γ5 drop out since they’re antisymmetric on µ and ν. We’re

left with

〈|M|2〉 =
1

12
g2
Z(c2

V + c2
A) 4(pµ2p

ν
1 − gµνp1 · p2 + pµ1p

ν
2)

(
−gµν +

kµkν
m2
Z

)
=

1

3
g2
Z(c2

V + c2
A)

(
p1 · p2 +

2k · p1 k · p2

m2
Z

)
where we used k2 = m2

Z . In the rest frame of the Z we have

k = (mZ , 0, 0, 0) p1 =
(mZ

2
, 0, 0,

mZ

2

)
p2 =

(mZ

2
, 0, 0,−mZ

2

)
⇒ k · p1 = k · p2 = p1 · p2 =

m2
Z

2
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and the amplitude is simply

〈|M|2〉 =
1

3
g2
Z

(
c2
V + c2

A

)
m2
Z .

The partial width for the decay Z → ff̄ is then

ΓZ→ff̄ =
|p|

8πm2
Z

〈|M|2〉 =
1

3
αZmZ(c2

V + c2
A)

where we’ve introduced the Z analog of the fine structure constant αZ =
(gZ/2)2

4π = 1/91. Summing over fermions we find the total width of the Z

ΓZ =
1

3
αZmZ

∑
f

(
c2
V f + c2

Af

)
= 0.334 GeV

[
3× 0.50︸ ︷︷ ︸
νe νµ ντ

+ 3× 0.251︸ ︷︷ ︸
e µ τ

+ 6× 0.287︸ ︷︷ ︸
u c

+ 9× 0.370︸ ︷︷ ︸
d s b

]

where the contributions of the various fermions are indicated (don’t forget

to sum over quark colors!). This gives a total width ΓZ = 2.44 GeV, not

bad compared to the observed value Γobs = 2.50 GeV. The “invisible width”

of the Z can be inferred quite accurately, since (as we’ll discuss) the total

width shows up in the cross section for e+e− → hadrons near the Z pole.

In the standard model the invisible width comes from decays to neutrinos

which escape the detector. Knowing the invisible width allows us to count

the number of neutrino species Nν which couple to the Z and have masses

less than mZ/2. The particle data group gives Nν = 2.92± 0.07.
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39. Plots of cross sections and related quantities 010001-7
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Figure 39.8: The ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−, QED-simple pole) in the cc region. (See the caption for Figs. [39.6–39.7]).
Note: The experimental shapes of J/ψ and ψ(2S) resonances are dominated by machine energy spread and are not shown.

MARK I: J.E. Augustin et al., Phys. Rev. Lett. 34, 764 (1975); and J.L. Siegrist et al., Phys. Rev. D26, 969 (1982).
MARK I + Lead Glass Wall: P.A. Rapidis et al., Phys. Rev. Lett. 39, 526 (1977).
MARK II: R.H. Schindler, SLAC-Report-219 (1979).
CRYSTAL BALL: A. Osterheld et al., SLAC-Pub-4160 (1986).
DASP: R. Brandelik et al., Phys. Lett. 76B, 361 (1978).
PLUTO: L. Criegee and G. Knies, Phys. Reports 83, 151 (1982).
BES: J.Z. Bai et al., Phys. Rev. Lett. 84, 594 (2000); and J.Z. Bai et al., Phys. Rev. Lett. 88, 101802 (2002).

Not shown (J/ψ peak) :

MARK I: A.M. Boyarski et al., Phys. Rev. Lett. 34, 1357 (1975).
BES: J.Z. Bai et al., Phys. Lett. B355, 374 (1995).

Annihilation Cross Section Near MZ

87 88 89 90 91 92 93 94 95 96
 0

 5

10

15

20

25

30

35

40

σ
 (n

b)

= E cm  (GeV)

2 ν's
3 ν's
4 ν's

L3

ALEPH
DELPHI

OPAL

s√

Figure 39.9: Data from the ALEPH, DELPHI, L3, and OPAL
Collaborations for the cross section in e+e− annihilation into
hadronic final states as a function of c.m. energy near the Z. LEP
detectors obtained data at the same energies; some of the points
are obscured by overlap. The curves show the predictions of the
Standard Model with three species (solid curve) and four species
(dashed curve) of light neutrinos. The asymmetry of the curves is
produced by initial-state radiation. References:

ALEPH: D. Decamp et al., Z. Phys. C53, 1 (1992).
DELPHI: P. Abreu et al., Nucl. Phys. B367, 511 (1992).
L3: B. Adeva et al., Z. Phys. C51, 179 (1991).
OPAL: G. Alexander et al., Z. Phys. C52, 175 (1991).

12.4.2 e+e− annihilation near the Z pole

At energies near mZ the process e+e− → ff̄ is dominated by the formation

of an intermediate Z resonance.

_

2

p
1

p
4

e
_

+e
p

3

k

Z
f

f

p

The amplitude for this process is

−iM = v̄(p2)

(
− igZ

2
(cV eγ

µ − cAeγµγ5)

)
u(p1)

−i
(
gµν − kµkν

m2
Z

)
k2 −m2

Z

ū(p3)

(
− igZ

2
(cV fγ

ν − cAfγνγ5)

)
v(p4)

For simplicity let’s neglect the external fermion masses. Then, just as in our

calculation of inverse muon decay in section 9.3, the kµkν/m
2
Z term in the
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Z propagator can be neglected. To see this note that k = p1 + p2 = p3 + p4

and use the Dirac equation for the external lines. This leaves

−iM =
ig2
Z

4(k2 −m2
Z)
v̄(p2)(cV eγ

µ−cAeγµγ5)u(p1) ū(p3)(cV fγµ−cAfγµγ5)v(p4) .

It’s convenient to work in terms of chiral spinors. Suppose all the spinors

appearing in our amplitude are right-handed. Recalling the connection be-

tween chirality and helicity for massless fermions, this means the amplitude

for polarized scattering e+
Le
−
R → fRf̄L is

−iMe+Le
−
R→fRf̄L

=
ig2
Z

4(k2 −m2
Z)

(cV e−cAe)(cV f−cAf )v̄L(p2)γµuR(p1) ūR(p3)γµvL(p4)

where the subscripts L,R indicate particle helicities. Using the explicit form

of the spinors given in section 4.1 we have

v̄L(p2)γµuR(p1) ūR(p3)γµvL(p4) = −k2(1 + cos θ)

where θ is the center of mass scattering angle. (We worked out this angular

dependence in section 4.2. Here we’re keeping track of the normalization as

well.) This means

|M|2
e+Le
−
R→fRf̄L

=
g4
Zk

4

16(k2 −m2
Z)2 (cV e − cAe)2(cV f − cAf )2(1 + cos θ)2 .

At this point we need to take the finite lifetime of the Z into account.

As usual in quantum mechanics we can regard the width of an unstable

state as an imaginary contribution to its energy, so we can take the width

of the Z into account by replacing mZ → mZ − iΓZ/2. This modifies the Z

propagator,

1

k2 −m2
Z

→ 1

k2 − (mZ − iΓZ/2)2
≈ 1

k2 −m2
Z + imZΓZ

where we assumed the width was small compared to the mass. With this

modification

|M|2
e+Le
−
R→fRf̄L

=
g4
Zk

4

16
(
(k2 −m2

Z)2 +m2
ZΓ2

Z

)(cV e−cAe)2(cV f−cAf )2(1+cos θ)2 .

Now we can work at resonance and set k2 = m2
Z to find

|M|2
e+Le
−
R→fRf̄L

=
g4
Zm

2
Z

16Γ2
Z

(cV e − cAe)2(cV f − cAf )2(1 + cos θ)2 .
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Plugging this into dσ
dΩ = |M|2

64π2s
and integrating over angles gives the cross

section for polarized scattering at the Z pole.

σe+Le
−
R→fRf̄L

=
4πα2

Z

3Γ2
Z

(cV e − cAe)2(cV f − cAf )2

The other polarized cross sections are almost identical, one just gets ± signs

depending on the spinor chiralities.

σe+Le
−
R→fLf̄R

=
4πα2

Z

3Γ2
Z

(cV e − cAe)2(cV f + cAf )2

σe+Re
−
L→fRf̄L

=
4πα2

Z

3Γ2
Z

(cV e + cAe)
2(cV f − cAf )2

σe+Re
−
L→fLf̄R

=
4πα2

Z

3Γ2
Z

(cV e + cAe)
2(cV f + cAf )2

Averaging over initial spins and summing over final spins, the unpolarized

cross section is

σ =
4πα2

Z

3Γ2
Z

(c2
V e + c2

Ae)(c
2
V f + c2

Af ) .

Now we can compute the cross section for e+e− → hadrons by summing

over f = u, c, d, s, b. Using our result for the Z width we’d estimate

σ(e+e− → hadrons) = 1.1× 10−4 GeV−2 = 43 nb

which isn’t bad compared to the PDG value σhad = 41.5 nb. We can also

estimate the cross section ratio

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
.

Recalling that the QED cross section is σ(e+e− → µ+µ−) = 4πα2/3s we’d

estimate that near the Z pole

R =
α2
Zm

2
Z

α2Γ2
Z

(
c2
V e + c2

Ae

) ∑
f=u,c,d,s,b

(
c2
V f + c2

Af

)
≈ 3510

which again is pretty close to the observed value (see the plot in chapter 3).

12.4.3 Higgs production and decay

Finally, a few words on Higgs production and decay. At an e+e− collider

the simplest production mechanism
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+

H

e
_

e

is negligible due to the small electron Yukawa coupling. The dominant

production mechanism is e+e− → Z∗ → ZH via the diagram

Z+

e
_

Z

H

e

At a hadron collider the main production mechanism is “gluon fusion,” in

which two gluons make a Higgs via a quark loop.

g

H

g

g

H

g

The biggest contribution comes from a loop of top quarks: the enhancement

of the diagram due to the large top Yukawa coupling turns out to win over

the suppression due to the large top mass.

For a light Higgs (meaning mH < 140 GeV) the most important decay is

H → bb̄; the b quark is favored since it has the largest Yukawa coupling.

_

H

b

b
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For a heavy Higgs (meaning mH > 140 GeV) the decays H → W+W− and

H → ZZ become possible and turn out to be the dominant decay modes.

_

W

W

H

+ Z

Z

H

(If mH < 2mW or mH < 2mZ one of the vector bosons is off-shell.) The

nature of the Higgs depends on its mass. A light Higgs is a quite narrow

resonance, but the Higgs width increases rapidly above the W+W− thresh-

old.

What might we hope to see at the LHC? For a light Higgs the dominant

bb̄ decay mode is obscured by QCD backgrounds and one has to look for

rare decays. A leading candidate is H → γγ which can occur through

a top quark triangle (similar to the gluon fusion diagrams drawn above)

or through a W loop. Somewhat counter-intuitively it’s easier to find a

heavy Higgs. If mH > 2mZ there are clean signals available, most notably

H → ZZ → µ+µ−µ+µ−.
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FIG. 9: SM Higgs decay branching ratios as a function of MH . The blue curves represent tree-level

decays into electroweak gauge bosons, the red curves tree level decays into quarks and leptons, the

green curves one-loop decays. From Ref. [6].

FIG. 10: SM Higgs total decay width as a function of MH . From Ref. [6].

boson can decay into pairs of electroweak gauge bosons (H → W+W−, ZZ), and into pairs

of quarks and leptons (H → QQ̄, l+l−); while at one-loop it can also decay into two photons

(H → γγ), two gluons (H → gg), or a γZ pair (H → γZ). Fig. 9 represents all the decay

branching ratios of the SM Higgs boson as functions of its mass MH . The SM Higgs boson

total width, sum of all the partial widths Γ(H → XX), is represented in Fig. 10.

Fig. 9 shows that a light Higgs boson (MH ≤ 130−140 GeV) behaves very differently from

35

From Reina, p. 35:
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Exercises

12.1 W decay

The W− can decay to a weak doublet pair of fermions via the

diagram

W
_

Use this to compute the total width of the W . How did you do

compared to the observed value 2.085± 0.042 GeV? A few hints:

• aside from the top quark, it’s okay to neglect fermion masses

• see if you can write your answer in terms of α and sin2 θW , where

at the scale mW these quantities have the values

α = 1/128 (not 1/137!)

sin2 θW = 0.231

• when summing over quarks in the final state, it helps to remember

that the CKM matrix is unitary, (V V †)ij = δij

12.2 Polarization asymmetry at the Z pole

SLAC studied e−e+ → ff̄ at the Z pole with a polarized e− beam.

The polarization asymmetry is defined by

ALR =
σ(e−Le

+
R → ff̄)− σ(e−Re

+
L → ff̄)

σ(e−Le
+
R → ff̄) + σ(e−Re

+
L → ff̄)

where the subscripts indicate the helicity of the particles. For sim-

plicity you can neglect the mass of the electron, but you should keep

mf 6= 0.

(i) Write down the amplitude for the basic process

f
+

Z

e
_ f

_

e
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(ii) Write down the amplitude when the incoming electron is polar-

ized, either left-handed γ5u(p1) = −u(p1) or right-handed γ5u(p1) =

+u(p1).

(iii) Compute ALR in terms of sin2 θW . You can do this without

using any trace theorems!

(iv) The observed asymmetry in e−e+ → hadrons is ALR = 0.1514±
0.002. How well did you do?

12.3 Forward-backward asymmetries at the Z pole

Consider unpolarized scattering e+e− → ff̄ near the Z pole. The

diagram is

f
+

Z

e
_ f

_

e

The forward-backward asymmetry AfFB is defined in terms of the

cross sections for forward and backward scattering by

σF = 2π

∫ 1

0
d(cos θ)

(
dσ

dΩ

)
e+e−→ff̄

σB = 2π

∫ 0

−1
d(cos θ)

(
dσ

dΩ

)
e+e−→ff̄

AfFB =
σF − σB
σF + σB

Here θ is the scattering angle measured in the center of mass frame

between the outgoing fermion f and the incoming positron beam.

(i) Write down the differential cross sections for the polarized pro-

cesses

e+
Le
−
R → fLf̄R

e+
Le
−
R → fRf̄L

e+
Re
−
L → fLf̄R

e+
Re
−
L → fRf̄L

You can neglect the masses of the external particles. Also you

don’t need to keep track of any overall normalizations that would
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end up cancelling out of AfFB. Hint: rather than use trace the-

orems, you should use results from our discussion of polarized

scattering e+e− → µ+µ− in QED.

(ii) Compute AfFB for f = e, µ, τ, b, c, s. How well did you do, com-

pared to the particle data book? (See table 10.4 in the section

“Electroweak model and constraints on new physics,” where AfFB
is denoted A

(0,f)
FB .)

12.4 e+e− → ZH

Compute the cross section for e+e− → ZH from the diagram

Z+

e
_

Z

H

e

For simplicity you can neglect the electron mass. You should find

σ =
πα2

Zλ
1/2(λ+ 12m2

Z/s)

12s(1−m2
Z/s)

2

(
1 + (1− 4 sin2 θW )2

)
where

λ =

(
1− m2

Z +m2
H

s

)2

− 4m2
Zm

2
H

s2
.

12.5 H → ff̄ , W+W−, ZZ

(i) Compute the partial width for the decay H → ff̄ from the dia-

gram

_

H

f

f

For leptons you should find

Γ(H → ff̄) =
m2
f

8πm2
Hv

2

(
m2
H − 4m2

f

)3/2
while for quarks the color sum enhances the width by a factor of

three.
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(ii) Compute the partial widths for the decays H → W+W− and

H → ZZ from the diagrams

_

W

W

H

+ Z

Z

H

The Feynman rules are in appendix E. You should find

Γ(H →W+W−) =
m3
H

16πv2
(1− rW )1/2

(
1− rW +

3

4
r2
W

)
Γ(H → ZZ) =

m3
H

32πv2
(1− rZ)1/2

(
1− rZ +

3

4
r2
Z

)
where rW = 4m2

W /m
2
H and rZ = 4m2

Z/m
2
H .

(iii) Show that a heavy Higgs particle will decay predominantly to

longitudinally-polarized vector bosons. That is, show that for

large mH the total width of the Higgs is dominated by H →
W+
LW

−
L and H → ZLZL. You can base your considerations on

the diagrams in parts (i) and (ii).

12.6 H → gg

The Higgs can decay to a pair of gluons. The leading contribution

comes from a top quark loop.

1

H
q

µ a

ν b

k 2

k

ν

1

H
q

a

k 2 b

µ
k

For mH � mt this process can be captured by a low-energy effective
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Lagrangian with an interaction term

Lint =
1

2
AH Tr (GµνG

µν) . (12.4)

Here A is a coupling constant, H is the Higgs field, and Gµν is the

gluon field strength. The corresponding interaction vertex is

2

q

k
µ a

ν b

k

1

−iAδab (k1 · k2g
µν − kν1kµ2 )

(i) Write down the amplitude for the two triangle diagrams. No

need to evaluate traces or loop integrals at this stage.

(ii) Set q = 0 so that k1 = −k2 ≡ k and show that

+ =
λt√

2

∂

∂mt

Here λt is the top quark Yukawa coupling and mt is the top quark

mass. Is there a simple reason you’d expect such a relation to

hold?

(iii) Use the results from appendix C to show that the vacuum po-

larization diagram is equal to

−2

3
g2δab(gµνk2−kµkν)

∫
d4p

(2π)4

[
1

(p2 −m2
t )

2 −
1

(p2 −M2)2

]
+O(k4) .

Here we’re doing a Taylor series expansion in the external momen-

tum k, and M is a Pauli-Villars regulator mass. (Alternatively you

could work with a momentum cutoff Λ and send Λ → ∞.) Use

this to compute the amplitude for H → gg at q = 0. Match to

the amplitude you get from the effective field theory vertex and

determine the coupling A.

(iv) Use the effective Lagrangian to compute the partial width for

the decay H → gg. You should work on-shell, with q2 = m2
H .
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Express your answer in terms of αs, the Higgs mass mH , and the

Higgs vev v.

A few comments: the effective Lagrangian (12.4) can also be used

to describe the “gluon fusion” process gg → H which is the main

mechanism for producing the Higgs boson at a hadron collider. Note

that the width we’ve obtained is independent of the top mass. In

fact the calculation is valid in the limit mt → ∞. This violates the

decoupling of heavy particles mentioned at the end of problem C.2.

The reason is that large mt indeed suppresses the loop, but large λt
enhances the vertex, and these competing effects leave a finite result

in the limit mt ∼ λt →∞.
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Symmetries have played a crucial role in our construction of the standard

model. So far by a symmetry we’ve meant a transformation of the fields

that leaves the Lagrangian invariant. This was our definition of a symme-

try in chapter 5. Although perfectly sensible in classical field theory, this

definition misses a key aspect of the quantum theory, namely that quan-

tum field theory requires both a Lagrangian and a cutoff procedure to be

well-defined. It could be that symmetries of the Lagrangian are violated

by the cutoff procedure. Sometimes such violations are inevitable, in which

case the symmetry is said to be anomalous. The prototype for this sort of

phenomenon is the “chiral anomaly:” the breakdown of gauge invariance in

chiral spinor electrodynamics.

13.1 The chiral anomaly

Consider a free massless chiral fermion, either right- or left-handed. We

will describe it using a Dirac spinor ψ with either the top two or bottom

two components of ψ vanishing. The free Lagrangian L = ψ̄iγµ∂µψ has an

obvious U(1) symmetry ψ → e−iαψ. The corresponding Noether current

jµ = ψ̄γµψ is classically conserved; one can easily check that the Dirac

equation ∂/ψ = 0 implies ∂µj
µ = 0. Following the standard procedure you

might think we can gauge this symmetry, introducing a vector field Aµ and

a covariant derivative to obtain a theory

L = ψ̄iγµ (∂µ + ieQAµ)ψ (13.1)

which is invariant under position-dependent gauge transformations

ψ → e−ieQα(x)ψ Aµ → Aµ + ∂µα .

As usual, Q is the charge of the field measured in units of e =
√

4πα.

150
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It might seem we’ve described one of the simplest gauge theories imag-

inable – massless chiral spinor electrodynamics. The classical Lagrangian

(13.1) is certainly gauge invariant. But as we’ll show, gauge invariance is

spoiled by radiative corrections at the one loop level. This phenomenon is

variously known as the chiral, triangle, or ABJ anomaly, after its discoverers

Adler, Bell and Jackiw.†
Before discussing the breakdown of gauge invariance, it’s important to

realize that we’re going to use the vector field in two different ways.

(i) We might regard Aµ as a classical background field. In this case the

vector field has no dynamics of its own; rather it’s value is prescribed

externally to the system by some agent. We can then use Aµ to probe

the behavior of the system. For example, we can obtain the current

jµ = ψ̄γµψ by varying the action with respect to the vector field.

jµ(x) = − 1

eQ

δS

δAµ(x)
(13.2)

(ii) We might try to promote Aµ to a dynamical field, adding a Maxwell

term to the action and giving it a life (or at least, equations of motion)

of its own.

Given the breakdown of gauge invariance, the second possibility cannot be

realized.

13.1.1 Triangle diagram and shifts of integration variables

We now turn to the breakdown of gauge invariance. The problem with gauge

invariance is rather subtle and unexpected (hence the name anomaly): it

arises in, and only in, the one-loop triangle graph for three photon scattering.

The Lagrangian (13.1) corresponds to a vertex

−ieQγµ 1
2(1± γ5)

There’s a projection operator in the vertex to enforce that only a single

spinor chirality participates. Throughout this chapter the upper sign corre-

sponds to a right-handed spinor, the lower sign to left-handed. This vertex

leads to three photon scattering at one loop via the diagrams

† S. Adler, Phys. Rev. 177 (1969) 2426, J. Bell and R. Jackiw, Nuovo Cim. 60A (1969) 47.



152 Anomalies

3

µ

k
1

3
k

p + k2

λ

ν
2k

p

p − k

+
crossed diagram

(k2, ν)↔ (k3, λ)

The scattering amplitude is easy to write down.

−iMµνλ = (−1)

∫
d4p

(2π)4
Tr

{
−ieQγµ

i

p/ + k/2

(− ieQγν)
i

p/
(− ieQγλ)

i

p/− k/3

1

2
(1± γ5)

}
+Tr

{
−ieQγµ

i

p/ + k/3

(− ieQγλ)
i

p/
(− ieQγν)

i

p/− k/2

1

2
(1± γ5)

}
(13.3)

All external momenta are directed inward, with k1 + k2 + k3 = 0. Also we

combined the projection operators in each vertex into a single 1
2(1 ± γ5)

which enforces the fact that only a single spinor chirality circulates in the

loop.

What properties do we expect of this amplitude?

(i) Current conservation at each vertex, or equivalently gauge invariance.

This implies that photons with polarization vectors proportional to

their momentum should decouple,

kµ1Mµνλ = kν2Mµνλ = kλ3Mµνλ = 0 .

(ii) Bose statistics. Photons have spin 1, so the amplitude should be

invariant under permutations of the external lines.

There’s a simple argument which seems to show that Bose symmetry is

satisfied. Invariance under exchange (k2, ν)↔ (k3, λ) is manifest; given our

labelings it just corresponds to exchanging the two diagrams. However we

should check invariance under exchange of say (k1, µ) with (k2, ν). Making

this exchange in (13.3) we get

−iMνµλ = (−1)

∫
d4p

(2π)4
Tr

{
−ieQγν

i

p/ + k/1

(− ieQγµ)
i

p/
(− ieQγλ)

i

p/− k/3

1

2
(1± γ5)

}
+Tr

{
−ieQγν

i

p/ + k/3

(− ieQγλ)
i

p/
(− ieQγµ)

i

p/− k/1

1

2
(1± γ5)

}
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Shifting the integration variable pµ → pµ + kµ3 in the first line, and pµ →
pµ−kµ3 in the second, and making some cyclic permutations inside the trace,

we seem to recover our original expression (13.3).

There’s a similar argument for current conservation. Let’s check whether

kµ1Mµνλ = 0. Dotting the amplitude into kµ1 and using the trivial identities

k/1 = p/− k/3 − (p/ + k/2) in the first line

k/1 = p/− k/2 − (p/ + k/3) in the second
(13.4)

we obtain

−ikµ1Mµνλ = −e3Q3

∫
d4p

(2π)4
Tr
{ 1

p/ + k/2

γν
1

p/
γλ

1

2
(1∓ γ5)− 1

p/− k/3

γν
1

p/
γλ

1

2
(1∓ γ5)

+
1

p/
γν

1

p/ + k/3

γλ
1

2
(1∓ γ5)− 1

p/
γν

1

p/− k/2

γλ
1

2
(1∓ γ5)

}
After shifting p→ p−k2 in the first term, it seems the first and fourth terms

cancel. Likewise after shifting p → p + k3 in the second term, it seems the

second and third terms cancel.

This makes it seem we have both current conservation and Bose statistics.

However our arguments relied on shifting the loop momentum and – this is

the subtle point – one can’t necessarily shift the integration variable in a

divergent integral. To see this consider a generic loop integral
∫ d4p

(2π)4 f(pµ+

aµ). Suppose we expand the integrand in a Taylor series.∫
d4p

(2π)4
f(pµ + aµ) =

∫
d4p

(2π)4
f(p) + aµ∂µf(p) +

1

2
aµaν∂µ∂νf(p) + · · ·

If the integral converges, or is at most log divergent, then f(p) falls off

rapidly enough at large p that we can drop total derivatives. This is the

usual situation, and corresponds to the fact that usually the integral is

independent of aµ. But if the integral diverges we need to have a cutoff in

mind, say a cutoff on the magnitude of the Euclidean 4-momentum |pE | < Λ.

For linearly divergent integrals f(p) ∼ 1/p3 and the order a term in the

Taylor series generates a finite surface term. This invalidates the naive

arguments for Bose symmetry and current conservation given above.

For future reference it’s useful to be explicit about the value of the surface

term. For a linearly divergent integral∫
d4p

(2π)4
aµ∂µf(p) = −i

∫
|pE |<Λ

d4pE
(2π)4

aµE
∂

∂pµE
f(pE)

= −iaµE
∫ Λ

0
p3
EdpE

∫
dΩ

(2π)4

∂

∂pµE
f(pE)
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= −iaµE
∫

dΩ

(2π)4
p2
Ep

µ
Ef(pE)

∣∣∣
pE=Λ

= −iaµE
1

8π2
lim

pE→∞
〈p2
Ep

µ
Ef(pE)〉

= −iaµ 1

8π2
lim
p→∞
〈p2pµf(p)〉 (13.5)

In the first line we Wick rotated to Euclidean space. In the second line

we switched to spherical coordinates. In the third line we did the radial

integral, picking up a unit outward normal vector pµE/pE . In the fourth

line we rewrote the angular integral as an average over a unit 3-sphere with

“area” 2π2 and took the limit Λ → ∞. In the last line we rotated back

to Minkowski space; the angle brackets now indicate an average over the

Lorentz group.

13.1.2 Triangle diagram redux

Now that we’ve understood the potential difficulty, let’s return to the trian-

gle diagrams. Rather than study the violation of Bose symmetry in detail,

we’re simply going to demand that the scattering amplitude be symmetric.

The most straightforward way to do this is to define the scattering ampli-

tude to be given by averaging over all permutations of the external lines.

Equivalently, we average over cyclic permutations of the internal momentum

routing. That is, we define the Bose-symmetrized amplitude

−iMsymm
µνλ =

1

3

[
+

p

µ

ν

λ

µ

ν

λ
p

pµ

ν

λ

+

+ crossed diagrams

]
Explicitly this gives

−iMsymm
µνλ = ∓1

6
e3Q3

∫
d4p

(2π)4
Tr

{
γµ

1

p/
γν

1

p/− k/2

γλ
1

p/ + k/1

γ5 + γµ
1

p/ + k/2

γν
1

p/
γλ

1

p/− k/3

γ5

+γµ
1

p/− k/1

γν
1

p/ + k/3

γλ
1

p/
γ5 + γµ

1

p/
γλ

1

p/− k/3

γν
1

p/ + k/1

γ5

+γµ
1

p/ + k/3

γλ
1

p/
γν

1

p/− k/2

γ5 + γµ
1

p/− k/1

γλ
1

p/ + k/2

γν
1

p/
γ5

}
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Here we’ve used the fact that only terms involving γ5 contribute to the scat-

tering amplitude.† The amplitude is divergent; to regulate it we’ll impose a

cutoff on the Euclidean loop momentum |pE | < Λ.

Having enforced Bose symmetry, let’s check current conservation by dot-

ting this amplitude into kµ1 . Using identities similar to (13.4) to cancel the

propagators adjacent to k/1, it turns out that most terms cancel, leaving only

−ikµ1Msymm
µνλ = ±1

6
e3Q3

∫
d4p

(2π)4
Tr

{
1

p/ + k/2

γν
1

p/− k/1

γλγ
5 − 1

p/ + k/1

γν
1

p/− k/2

γλγ
5

+
1

p/− k/1

γν
1

p/ + k/3

γλγ
5 − 1

p/− k/3

γν
1

p/ + k/1

γλγ
5

}
Shifting p → p + k2 − k1 in the second term it seems to cancel the first,

and shifting p→ p+ k3− k1 in the fourth term it seems to cancel the third.

This naive cancellation means the whole expression is given just by a surface

term.

−ikµ1Msymm
µνλ = ±1

6
e3Q3

∫
d4p

(2π)4
(kα2 − kα1 )

∂

∂pα
Tr

{
1

p/
γν

1

p/ + k/3

γλγ
5

}
+ (kα3 − kα1 )

∂

∂pα
Tr

{
1

p/ + k/2

γν
1

p/
γλγ

5

}
Using our result for the surface term (13.5), evaluating the Dirac traces

with Tr
(
γαγβγγγδγ5

)
= 4iεαβγδ, and averaging over the Lorentz group with

〈pαpβ〉 = 1
4gαβ p

2 we are left with a finite, non-zero, “anomalous” result.

−ikµ1Msymm
µνλ = ∓e

3Q3

12π2
ενλαβk

α
2 k

β
3 (13.6)

Current conservation is violated by the triangle diagrams!

13.1.3 Comments

This breakdown of current conservation is quite remarkable, and there’s

quite a bit to say about it. Let me start by giving a few different ways to

formulate the result.

(i) One could imagine writing down an effective action for the vector field

Γ[A] which incorporates the effect of fermion loops. The amplitude

† Terms without a γ5 would describe three photon scattering in ordinary QED. But in ordinary
QED the photon is odd under charge conjugation and the amplitude for three photon scattering
vanishes (Furry’s theorem).
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we’ve computed corresponds to the following rather peculiar-looking

term in the effective action.

Γ[A] = · · · ±
∫
d4xd4y

e3Q3

96π2
∂µA

µ(x)�−1(x− y) εαβγδFαβFγδ(y)

(13.7)

Here �−1(x − y) should be thought of as a Green’s function, the

inverse of the operator ∂µ∂
µ, and Fαβ is the field strength of Aµ. To

verify this, note that the term we’ve written down in Γ[A] corresponds

to a 3-photon vertex

k

ν

λ

µ

k 1

3

k 2

∓e
3Q3

12π2

(
1

k2
1

k1µενλαβk
α
2 k

β
3 + cyclic perms

)

When dotted into one of the external momenta, this amplitude re-

produces (13.6).

(ii) One can view the anomaly as a violation of current conservation.

Without making Aµ dynamical, we can regard it as an externally

prescribed background field, and we can use it to define a quantum-

corrected current via jµ = − 1
eQ

δΓ
δAµ

(this parallels the classical current

definition (13.2)). Given the term (13.7) in the effective action, the

quantum-corrected current satisfies

∂µj
µ = − 1

eQ
∂µ

δΓ

δAµ
= ±e

2Q2

96π2
εαβγδFαβFγδ . (13.8)

(iii) One can also view the anomaly as a breakdown of gauge invariance.

Clearly the effective action (13.7) isn’t gauge invariant. This means

the gauge invariance of the classical Lagrangian is violated by radia-

tive corrections. Since the gauge invariance is broken, it would not

be consistent to promote Aµ to a dynamical gauge field.

There’s a connection between current conservation and gauge invariance:

the divergence of the current measures the response of the effective action

to a gauge transformation. To see this note that under Aµ → Aµ + ∂µα we
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have

δΓ =

∫
d4x

δΓ

δAµ
∂µα = −

∫
d4x ∂µ

δΓ

δAµ
α = eQ

∫
d4x ∂µj

µα . (13.9)

Next let me make a few comments on how robust our results are.

(i) Due to the 1/�, the effective action we’ve written down is non-local

(it can’t be written with a single
∫
d4x). Although seemingly ob-

scure, this is actually a very important point. Imagine modifying

the behavior of our theory at short distances while keeping the long-

distance behavior the same. To be concrete you could imagine that

some new heavy particles, or even quantum gravity effects, become

important at short distances. By definition such short-distance mod-

ifications can only affect local terms in the effective action. Since the

term we wrote down is non-local, the anomaly is independent of any

short-distance change in the dynamics!

(ii) As we saw, the anomaly arises from the need to introduce an ultra-

violet regulator, which can be thought of as an ad hoc short-distance

modification to the dynamics. But given our statements above, the

details of the regulator don’t matter – any cutoff procedure will give

the same result for the anomaly! (See however section 13.2.)

(iii) The anomaly we’ve computed at one loop is not corrected by higher

orders in perturbation theory. Our result for the divergence of the

current (13.8) is exact! This is known as the Adler-Bardeen theorem.†
The proof is based on showing that only the triangle diagram has the

divergence structure necessary for generating an anomaly.

It’s worth amplifying on the cutoff dependence. Field theory requires both

an underlying Lagrangian and a cutoff scheme. A symmetry of the La-

grangian will be a symmetry of the effective action provided the symmetry is

respected by the cutoff. Otherwise symmetry-breaking terms will be gener-

ated in the effective action. We saw an example of this in appendix C, where

we used a momentum cutoff to compute the vacuum polarization diagram

and found that an explicit photon mass term was generated. It could be that

the symmetry breaking terms are local, as in appendix C, in which case they

can be canceled by adding suitable “local counterterms” to the underlying

action. Alternatively one could avoid generating the non-invariant terms in

the first place by using a cutoff that respects the symmetry. But it could be

that the symmetry-breaking terms in the effective action are non-local, as

† S. Adler and W. Bardeen, Phys. Rev. 182 (1969) 1517.
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we found above for the anomaly. In this case no change in cutoff can restore

the symmetry.

13.1.4 Generalizations

There are a few important generalizations of the triangle anomaly. First

let’s consider non-abelian symmetries. Take a chiral fermion, either right-

or left-handed, in some representation of the symmetry group. Let T a be a

set of Hermitian generators. The label a could refer to global as well as to

gauge symmetries. The current of interest is promoted to

jµa = ψ̄γµT aψ

and the vertex becomes

−igγµT a 1
2(1± γ5)

We’re denoting the gauge coupling by g. The triangle graph can be evaluated

just as in the abelian case and gives

∂µj
µa = ± g2

96π2
dabcεαβγδ

(
∂αA

b
β − ∂βAbα

) (
∂γA

c
δ − ∂δAcγ

)
triangle only

where dabc = 1
2Tr

(
T a{T b, T c}

)
. However for non-abelian symmetries the

triangle graph isn’t the end of the story: square and pentagon diagrams also

contribute. If T a generates a global symmetry, while T b and T c are gauge

generators, then the full form of the anomalous divergence is easy to guess.

We just promote the triangle result to the following gauge invariant form.

∂µj
µa = ± g2

96π2
dabcεαβγδF bαβF

c
γδ global (13.10)

If T a is one of the gauge generators then the full form of the anomaly is

somewhat more involved. It turns out that the current is not covariantly

conserved, but rather satisfies

Dµjµa = ± g2

24π2
dabcεαβγδ∂α

(
Abβ∂γA

c
δ +

1

4
gf cdeAbβA

d
γA

e
δ

)
gauge

where the structure constants of the group fabc are defined by [T a, T b] =

ifabcT c. In any case note that the anomaly is proportional to dabc.
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One can also get an anomaly from a triangle graph with one photon and

two gravitons.

graviton

A µ

graviton

+ crossed diagram

The photon couples to the current jµ = ψ̄γµψ. With a chiral fermion

running in the loop, this diagram generates an anomalous divergence

∂µj
µ = ± 1

8 · 96π2
εαβγδRαβστRγδ

στ

where Rαβγδ is the Riemann curvature.†

13.2 Gauge anomalies

In order to gauge a symmetry we must have a valid global symmetry to

begin with. To see how this might be achieved suppose we have two spinors,

one right-handed and one left-handed. Assembling them into a Dirac spinor

ψ, the currents

jµR = ψ̄γµ
1

2
(1 + γ5)ψ jµL = ψ̄γµ

1

2
(1− γ5)ψ

have anomalous divergences

∂µj
µ
R =

e2Q2

96π2
εαβγδRαβRγδ ∂µj

µ
L = −e

2Q2

96π2
εαβγδLαβLγδ . (13.11)

Here Rµ and Lµ are background vector fields which couple to the chiral

components of ψ, and quantities with two indices are the corresponding field

strengths. Note that we’ve taken the right- and left-handed components of

ψ to have the same charge. The vector and axial currents

jµ = jµR + jµL = ψ̄γµψ jµ5 = jµR − j
µ
L = ψ̄γµγ5ψ

† More precisely: in curved space the Dirac Lagrangian is L = ψ̄iγµ(∂µ + 1
2
ωabµ Σab)ψ where ωabµ

is the spin conection and Σab = 1
4

[γa, γb] are Lorentz generators. For a chiral fermion the Aωω

triangle graphs give ∂µjµ = ± 1
8·96π2 ε

αβγδ(∂αωabβ − ∂βωabα )(∂γωδab − ∂δωγab) which can be

promoted to the generally-covariant form ∇µjµ = ± 1
8·96π2 ε

αβγδRαβστRγδ
στ .
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couple to the linear combinations

Vµ =
1

2
(Rµ + Lµ) Aµ =

1

2
(Rµ − Lµ) .

As a consequence of (13.11) these currents have divergences

∂µj
µ =

e2Q2

24π2
εαβγδVαβAγδ

∂µj
µ5 =

e2Q2

48π2
εαβγδ (VαβVγδ +AαβAγδ) .

At first sight this seems no better than having a single chiral spinor. But

consider adding the following local term to the effective action for Vµ and

Aµ.

∆S =
ce3Q3

6π2

∫
d4x εαβγδ∂αVβVγAδ

Here c is an arbitrary constant. This term violates both vector and axial

gauge invariance, so it contributes to the divergences of the corresponding

currents.

∆(∂µj
µ) = − 1

eQ
∂µ
δ(∆S)

δVµ
= −ce

2Q2

24π2
εαβγδVαβAγδ

∆(∂µj
µ5) = − 1

eQ
∂µ
δ(∆S)

δAµ
= +

ce2Q2

24π2
εαβγδVαβVγδ .

So if we add this term to the effective action and set c = 1, we have a

conserved vector current but an anomalous axial current.

∂µj
µ = 0 ∂µj

µ5 =
e2Q2

16π2
εαβγδ

(
VαβVγδ +

1

3
AαβAγδ

)
(13.12)

Given the conserved vector current we can add a Maxwell term to the action

and promote Vµ to a dynamical gauge field. The resulting theory is ordinary

QED.†
QED is a simple example of gauge anomaly cancellation: the field con-

tent is adjusted so that the gauge anomalies cancel (that is, so that the

effective action is gauge invariant). A similar cancellation takes place in

any “vector-like” theory in which the right- and left-handed fermions have

the same gauge quantum numbers. Anomaly cancellation in the standard

model is more intricate because the standard model is a chiral theory: the

left- and right-handed fermions have different gauge quantum numbers. In

† To make Vµ dynamical the choice c = 1 is mandatory and we have to live with the resulting
anomalous divergence in the axial current. If we don’t make Vµ dynamical then other choices
for c are possible. This freedom corresponds to the freedom to use different cutoff procedures.
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the standard model there are ten possible gauge anomalies, plus a gravita-

tional anomaly, and we just have to check them all.

First let’s consider the U(1)3 anomaly. A triangle diagram with three

external U(1)Y gauge bosons is proportional to ±Y 3, where Y is the hyper-

charge of the fermion that circulates in the loop and the sign depends on

whether the fermion is right- or left-handed. For the anomaly to cancel this

must vanish when summed over all standard model fermions. For a single

generation we have∑
left

Y 3 = (−1)3︸ ︷︷ ︸
νL

+ (−1)3︸ ︷︷ ︸
eL

+ 3 · (1/3)3︸ ︷︷ ︸
uL

+ 3 · (1/3)3︸ ︷︷ ︸
dL

= −16/9

∑
right

Y 3 = (−2)3︸ ︷︷ ︸
eR

+ 3 · (4/3)3︸ ︷︷ ︸
uR

+ 3 · (−2/3)3︸ ︷︷ ︸
dR

= −16/9

The U(1)3 anomaly cancels! Note that three quark colors are required for

this to work.

The full set of anomaly cancellation conditions are listed in the table.

In general one has to show that the anomaly coefficient dabc vanishes when

appropriately summed over standard model fermions. In some cases the con-

dition is rather trivial, since the SU(2)L generators T aL = 1
2σ

a and SU(3)C
generators T aC = 1

2λ
a are both traceless (I’m being sloppy and using a to

denote a generic group index). A few details: for the U(1)SU(2)2 anomaly

right-handed fermions don’t contribute, while Trσaσb = 2δab is the same for

every left-handed fermion, so we just get a condition on the sum of the left-

handed hypercharges. Similarly for the U(1)SU(3)2 anomaly leptons don’t

contribute, while Trλaλb = 2δab for every quark, so we just get a condition

on the quark hypercharges.

Remarkably all conditions in the table are satisfied: the fermion content of

the standard model is such that all potential gauge anomalies cancel. This

cancellation provides some rational for the peculiar hypercharge assignments

in the standard model. It’s curious that both quarks and leptons are required

for anomaly cancellation to work. However the anomalies cancel within each

generation, so this provides no insight into Rabi’s puzzle of who ordered the

second generation.

13.3 Global anomalies

Gauge anomalies must cancel for a theory to be consistent. However anoma-

lies in global symmetries are perfectly permissible, and indeed can have



162 Anomalies

anomaly cancellation condition
U(1)3

∑
left Y

3 =
∑

right Y
3

U(1)2SU(2) Trσa = 0

U(1)2SU(3) Trλa = 0

U(1)SU(2)2
∑

left Y = 0

U(1)SU(2)SU(3) Trσa = Trλa = 0

U(1)SU(3)2
∑

left quarks Y =
∑

right quarks Y

SU(2)3 Tr
(
σa
{
σb, σc

})
= Tr (σa) 2δbc = 0

SU(2)2SU(3) Trλa = 0

SU(2)SU(3)2 Trσa = 0

SU(3)3
vector-like (left- and right-handed
quarks in same representation)

U(1) (gravity)2
∑

left Y =
∑

right Y

important physical consequences. To illustrate this I’ll discuss global sym-

metries of the quark model. We’ll encounter another example in section 14.2

when we discuss baryon and lepton number conservation.

Recall the quark model symmetries discussed in chapter 6. With two

flavors of massless quarks ψ =
(
u
d

)
we’d expect an SU(2)L × SU(2)R chiral

symmetry. Taking vector and axial combinations, the associated conserved

currents are

jµa = ψ̄γµT aψ jµ5a = ψ̄γµγ5T aψ T a =
1

2
σa .

To couple the quark model to electromagnetism we introduce the generator

of U(1)em which is just a matrix with quark charges along the diagonal.

Q =

(
2/3 0

0 −1/3

)
However generalizing (13.12) to non-Abelian symmetries, along the lines of

(13.10), we see that there is an SU(2)AU(1)2
em anomaly.

∂µj
µ5a =

Nce
2

16π2
Tr
(
T aQ2

)
εαβγδFαβFγδ

Here Nc = 3 is the number of colors of quarks that run in the loop and Fαβ
is the electromagnetic field strength. The anomaly is non-vanishing for the

neutral pion (a = 3). As you’ll show on the homework, this is responsible

for the decay π0 → γγ.

The anomaly also lets us address a puzzle from chapter 6. With two flavors
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of massless quarks the symmetry is really U(2)L×U(2)R. The extra diagonal

U(1)V corresponds to conservation of baryon number. But what about the

extra U(1)A? It’s not a manifest symmetry of the particle spectrum, since

the charge associated with U(1)A would change the parity of any state it

acted on and there are no even-parity scalars degenerate with the pions. Nor

does U(1)A seem to be spontaneously broken. The only obvious candidate

for a Goldstone boson, the η, has a mass of 548 MeV and is too heavy to be

regarded as a sort of “fourth pion.”†
The following observation helps resolve the puzzle: the current associated

with the U(1)A symmetry, jµ5 = ψ̄γµγ5ψ, has a triangle anomaly with two

outgoing gluons.

∂µj
µ5 =

Nfg
2

16π2
εαβγδTr (GαβGγδ)

Here Gαβ is the gluon field strength and Nf = 2 is the number of quark

flavors. Since U(1)A is not a symmetry of the quantum theory it would

seem there is no need for a corresponding Goldstone boson. There are twists

and turns in trying to make this argument precise, but in a weak-coupling

expansion ’t Hooft showed that the anomaly combined with topologically

non-trivial gauge fields eliminates the need for a Goldstone boson associated

with U(1)A.
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Exercises

13.1 π0 → γγ

Recall that at low energies pions are described by the effective

Lagrangian

L =
1

4
f2
π Tr

(
∂µU

†∂µU
)

where fπ = 93 MeV and U = ei~π·~σ/fπ is an SU(2) matrix. This

action has an SU(2)L × SU(2)R symmetry U → LUR†.

(i) Consider an infinitesimal SU(2)A transformation for which

L ≈ 1− iθaσa/2 R ≈ 1 + iθaσa/2 .
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How do the pion fields πa behave under this transformation? How

does the effective action Γ behave under this transformation? Hint:

plug the divergence of the axial current (13.12) into (13.9). You

only need to keep track of terms involving two photons.

(ii) Show that the anomaly can be taken into account by adding the

following term to the effective Lagrangian.

∆L =
1

8
aπ3εαβγδFαβFγδ (13.13)

Determine the constant a by matching to your results in part (i).

(iii) The anomalous term in the effective action corresponds to a

vertex

ν

0

k

k

1

2

µ

π iaεµναβk
α
1 k

β
2

Use this to compute the width for the decay π0 → γγ. How did

you do compared to the observed width 7.7± 0.5 eV?

A few comments on the calculation:

• Note that the π0 width is proportional to the number of quark

colors.

• The anomaly dominates π0 decay because it induces a direct (non-

derivative) coupling between the pion field and two Maxwell field

strengths. Without the anomaly the pion would be a genuine

Goldstone boson, with a shift symmetry πa → πa + θa that only

allows for derivative couplings. The decay would then proceed via

a term in the effective action of the form ∂µ∂
µπ3εαβγδFαβFγδ. As

discussed by Weinberg p. 361 this would suppress the decay rate

by an additional factor ∼ (mπ/4πfπ)4, where 4πfπ ∼ 1 GeV is

the scale associated with chiral perturbation theory introduced on

p. 80.

• As discussed in the references, the term (13.13) in the effective

action can be extended to a so-called Wess-Zumino term which

fully incorporates the effects of the anomaly in the low energy

dynamics of Goldstone bosons.
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13.2 Anomalous U(1)’s

In QED the gauge anomaly cancels between the left- and right-

handed components of the electron. There’s another way to cancel

anomalies in U(1) gauge theories, discovered by Green and Schwarz

in the context of string theory. Consider an abelian gauge field Aµ
coupled to a chiral fermion, either left- or right-handed, so that the

effective action has the anomalous gauge variation (13.8) and (13.9).

Introduce a scalar field φ which shifts under gauge transformations:

φ→ φ− κα when Aµ → Aµ + ∂µα .

Here κ is a parameter with units of mass.

(i) Add the following higher-dimension term to the action.

∆S = ± e3Q3

96π2κ
φ εαβγδFαβFγδ

Show that under a gauge transformation the variation of ∆S ex-

actly cancels the anomalous variation of the effective action due

to the triangle graph.

(ii) Potential terms for φ are ruled out by the shift symmetry. Add a

kinetic term for φ to the action, 1
2DµφDµφ where Dµ is a suitable

covariant derivative. Go to unitary gauge by setting φ = 0 and

determine the mass spectrum of the theory.
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There are a few more features of the standard model I’d like to touch on

before concluding. Each of these topics could be developed in much more

detail. Some aspects are discussed in the homework; for further reading see

the references.

14.1 High energy behavior

In section 9.4 we showed that the IVB theory of weak interactions suffers

from bad high-energy behavior: although the IVB cross section for inverse

muon decay is acceptable, the cross section for e+e− →W+W− is in conflict

with unitarity. We went on to construct the standard model as a sponta-

neously broken gauge theory, claiming that this would guarantee good high

energy behavior. Here I’ll give some evidence to support this claim. Rather

than give a general proof of unitarity, I’ll proceed by way of two examples.

Our first example is e+e− → W+W−. In the standard model, provided

one neglects the electron mass, there are three diagrams that contribute.

γ

+

W
+

W
_

e
_

W
+

e+ e
_

W
_

e+ e
_

W
_

e

+
W

ν
Z

e

167
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The first diagram, involving neutrino exchange, was studied in section 9.4 in

the context of IVB theory. The other two diagrams, involving photon and Z

exchange, are new features of the standard model. Each of these diagrams

individually gives an amplitude that grows linearly with s at high energy.

But the leading behavior cancels when the diagrams are added: the sum is

independent of s in the high-energy limit, as required by unitarity. While

theoretically satisfying, this cross section has also been measured at LEP.

As can be seen in Fig. 14.1 the predictions of the standard model are borne

out. This measurement can be regarded as a direct test of the ZWW and

γWW couplings. It shows that the weak interactions really are described

by a non-abelian gauge theory!

The story becomes theoretically more interesting if we keep track of the

electron mass. Then the diagrams above have subleading behavior ∼ mes
1/2

which does not cancel in the sum. Fortunately in the standard model there is

an additional diagram involving Higgs exchange which contributes precisely

when me 6= 0.

H

+ e
_

W
_+

W

e

This diagram precisely cancels the s1/2 growth of the amplitude. The Higgs

particle is necessary for unitarity! Unfortunately the electron mass is so

small that we can’t see the contribution of this diagram at LEP energies.

Another process, more interesting from a theoretical point of view but less

accessible to experiment, is scattering of longitudinally-polarized W bosons,

W+
LW

−
L →W+

LW
−
L . In the standard model the tree-level amplitude for this

process has the high-energy behavior†

M =
m2
H

v2

(
s

s−m2
H

+
t

t−m2
H

)
. (14.1)

† M. Duncan, G. Kane and W. Repko, Nucl. Phys. B272 (1986) 517.
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Fig. 14.1. The cross section for e+e− →W+W− as measured at LEP. Data points
and error bars are indicated. The solid blue curve is the standard model prediction.
The dotted curves show what happens if the contributions of the γ and Z bosons
are neglected. From the LEP electroweak working group, via C. Quigg arXiv:hep-
ph/0502252.

To see the consequences of this result, it’s useful to think about it in two

different ways.

First way: suppose we require that the tree-level result (14.1) be com-

patible with unitarity at arbitrarily high energies. To study this we send

s, t→∞ and find M≈ 2m2
H/v

2. The unitarity bound on an s-wave cross-

section σ0 ≤ 4π/s translates into a bound on the corresponding amplitude,
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|M0| ≤ 8π. Imposing this requirement gives an upper bound on the Higgs

mass,

mH ≤
√

4πv = 870 GeV . (14.2)

If the Higgs mass satisfies this bound the standard model could in principle

be extrapolated to arbitrarily high energies while remaining weakly coupled.

Of course this may not be a sensible requirement to impose; if nothing else

gravity should kick in at the Planck scale.

Second way: let’s discard the physical Higgs particle by sending mH →∞,

and ask if anything goes wrong with the standard model. At large Higgs

mass the amplitude (14.1) becomes

M≈ − 1

v2
(s+ t) = − s

v2

(
1− sin2(θ/2)

)
.

The s-wave amplitude is given by averaging this over scattering angles,

M0 =
1

4π

∫
dΩM = − s

2v2
.

The unitarity bound |M0| ≤ 8π then implies
√
s ≤
√

16πv = 1.7 TeV. That

is, throwing out the standard model Higgs particle means that tree-level

unitarity is violated at the TeV scale. Something must kick in before this

energy scale in order to make W – W scattering compatible with unitarity.

This is good news for the LHC: at the TeV scale either the standard model

Higgs will be found, or some other new particles will be discovered, or at

the very least strong-coupling effects will set in. However we should keep in

mind that the LHC can’t directly study W – W scattering, and unitarity

bounds in other channels are weaker.

14.2 Baryon and lepton number conservation

We constructed the standard model by postulating a set of fields and writing

down the most general gauge-invariant Lagrangian. However we only con-

sidered operators with mass dimension up to 4. One might argue that this

is necessary for renormalizability, however there’s no real reason to insist

that the standard model be renormalizable. A better argument for stopping

at dimension 4 is that any higher dimension operators we might add will

have a negligible effect at low energies, provided they’re suppressed by a

sufficiently large mass scale.

Stopping with dimension-4 operators does have a remarkable consequence:
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the standard model Lagrangian is invariant under U(1) symmetries corre-

sponding to conservation of baryon and lepton number, as well as to conser-

vation of the individual lepton flavors Le, Lµ, Lτ . Note that we never had to

postulate any of these conservation laws, rather they arise as a by-product

of the field content of the standard model and the fact that we stopped at

dimension 4. Such symmetries, which arise only because one restricts to

renormalizable theories, are known as “accidental symmetries.”

These accidental symmetries of the standard model are phenomenologi-

cally desirable, of course, but there’s no reason to think they’re fundamental.

There are two aspects to this.

(i) It’s natural to imagine adding higher-dimension operators to the stan-

dard model, perhaps to reflect the effects of some underlying short-

distance physics. There’s no reason to expect these higher-dimension

operators to respect conservation of baryon or lepton number.

(ii) The accidental symmetries of the dimension-4 Lagrangian lead to

classical conservation of baryon and lepton number. However there’s

no reason to expect that these conservation laws are respected by the

quantum theory – there could be an anomaly.

We’ll see an explicit example of lepton number violation by higher dimension

operators when we discuss neutrino masses in the next section. So let me

focus on the second possibility, and show that the baryon and lepton number

currents in the standard model indeed have anomalies.

To set up the problem, recall that the baryon number current jµB is one

third of the quark number current. It can be written as a sum of left- and

right-handed pieces.

jµB =
1

3

∑
i

(
Q̄iγ

µQi + ūRiγ
µuRi + d̄Riγ

µdRi
)

Here Qi contains the left-handed quarks and i = 1, 2, 3 is a generation index.

There are also individual lepton flavor numbers, as well as the total lepton

number, corresponding to currents

jµLi = L̄iγ
µLi + ēRiγ

µeRi jµL =
∑
i

jµLi

These currents have anomalies with electroweak gauge bosons. Making use
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of the anomaly (13.10), the baryon number current has a divergence

∂µj
µ
B =

1

3
NcNg

(∑
right

Y 2 −
∑
left

Y 2
)(g′/2)2

96π2
εαβγδBαβBγδ −

g2

96π2
εαβγδTr (WαβWγδ)


(14.3)

where Nc = 3 is the number of colors, Ng = 3 is the number of generations,

and the hypercharges of a single generation of quarks contribute a factor∑
right

Y 2 −
∑
left

Y 2 = (4/3)2︸ ︷︷ ︸
uR

+ (−2/3)2︸ ︷︷ ︸
dR

− (1/3)2︸ ︷︷ ︸
uL

− (1/3)2︸ ︷︷ ︸
dL

= 2 .

Likewise the individual lepton number currents have anomalous divergences

∂µj
µ
Li

=
(∑

right

Y 2 −
∑
left

Y 2
)(g′/2)2

96π2
εαβγδBαβBγδ −

g2

96π2
εαβγδTr (WαβWγδ)

(14.4)

where a single generation of leptons gives∑
right

Y 2 −
∑
left

Y 2 = (−2)2︸ ︷︷ ︸
eR

− (−1)2︸ ︷︷ ︸
νL

− (−1)2︸ ︷︷ ︸
eL

= 2 .

Curiously the right hand side of (14.4) is the same as the right hand side of

(14.3), aside from an overall factor of 1
3NcNg.

This shows that baryon number, as well as the individual lepton numbers,

are all violated in the standard model. So why don’t we observe baryon and

lepton number violation? For simplicity let’s focus on baryon number vio-

lation by hypercharge gauge fields. Given the anomalous divergence (14.3)

we can find the change in baryon number between initial and final times ti,

tf by integrating

∆B =

∫ tf

ti

dt

∫
d3x ∂µj

µ
B ∼

∫ tf

ti

dt

∫
d3x εαβγδBαβBγδ .

But noting the identity

εαβγδBαβBγδ = ∂α

[
4εαβγδBβ∂γBδ

]
we see that the change in baryon number is the integral of a total derivative.

It’s tempting to discard surface terms and conclude that baryon number is

conserved. A more careful analysis shows that baryon number really is

violated, but only in topologically non-trivial field configurations where the

fields do not fall off rapidly enough at infinity to justify discarding surface

terms. ’t Hooft studied the resulting baryon number violation and showed
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that at low energies it occurs at an unobservably small rate.† It’s worth

noting that the differences Li − Lj are exactly conserved in the standard

model, as is the combination B − L.‡

14.3 Neutrino masses

Another accidental feature of the (renormalizable, dimension-4) standard

model is that neutrinos are massless. This is due to the field content of the

standard model, in particular the fact that we never introduced right-handed

neutrinos. However the observed neutrino flavor oscillations seem to require

non-zero neutrino masses at the sub-eV level. To accommodate neutrino

masses one approach is to extend the standard model by introducing a set

of right-handed neutrinos νRi which we take to be singlets under the standard

model gauge group (and therefore very hard to detect). We could then add

a term to the standard model Lagrangian

Lν mass = −ΛνijL̄iφ̃νRj + c.c.

After electroweak symmetry breaking this would give the neutrinos a con-

ventional Dirac mass term, via the same mechanism used for the up-type

quarks. In this approach the small neutrino masses would be due to tiny

Yukawa couplings Λνij . But extending the standard model in this way is

somewhat awkward: we have no evidence for right-handed neutrinos, and

it’s hard to see why their Yukawa couplings should be so small.

There’s a more appealing approach, in which we stick with the usual

standard model field content but consider the effects of higher-dimension

operators. The leading effects should come from dimension-5 operators.

Remarkably, there’s a unique operator one can write down at dimension

5 that’s gauge invariant and built from the usual standard model fields.

To construct the operator, note that φ̃ and Li have exactly the same gauge

quantum numbers. Then φ̃†Li is a left-handed spinor that is invariant under

gauge transformations. Charge conjugation on a Dirac spinor acts by ψC =

−iγ2ψ∗ and has the effect of changing spinor chirality (see appendix D).

This lets us build a gauge-invariant right-handed spinor(
φ̃†Li

)
C

= φ̃TLiC .

† G. ’t Hooft, Phys. Rev. Lett. 37 (1976) 8.
‡ Strictly speaking the B − L current has a gravitational anomaly which could be canceled by

adding right-handed neutrinos to the standard model.
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Putting these spinors together, we can make a gauge-invariant bilinear†(
φ̃TLiC

)(
φ̃†Lj

)
=
(
LiC φ̃

∗
)(

φ̃†Lj
)
.

So a possible dimension-5 addition to the standard model Lagrangian – in

fact the only dimension-5 term allowed by gauge symmetry – is

Ldim. 5 = −γij
X

(
LiC φ̃

∗
)(

φ̃†Lj
)
−
γ∗ij
X

(
Li φ̃

)(
φ̃TLjC

)
. (14.5)

Here γij is a matrix of dimensionless coupling constants, X is a quantity with

units of mass, and we added the complex conjugate to keep the Lagrangian

real.†
After electroweak symmetry breaking we can plug in the Higgs vev 〈φ̃〉 =(
v/
√

2
0

)
and the lepton doublet Li =

(
νLi
eLi

)
to find that Ldim. 5 reduces to

− v2

2X
γij νLiC νLj −

v2

2X
γ∗ij νLi νLjC .

This is a so-called Majorana mass term for the neutrinos. It can be written

more cleanly using the two-component notation introduced in appendix D,

as

v2

2X
γij ν

T
i ενj −

v2

2X
γ∗ij ν

†
i εν
∗
j (14.6)

where the Dirac spinor νLi ≡
(
νi
0

)
. In any case we can read off the neutrino

mass matrix

mν
ij =

v2

X
γij .

Assuming the energy scale X is much larger than the Higgs vev v, small

Majorana neutrino masses mν ∼ v2/X are to be expected in the standard

model.

A few comments:

(i) The dimension-5 operator we wrote down violates lepton number by

two units, and generically also violates conservation of the individ-

ual lepton flavors Le, Lµ, Lτ . This illustrates the fact that these

quantities were only conserved due to accidental symmetries of the

renormalizable standard model.

† The notation is a little overburdened: for example LiC ≡ (LiC)† γ0 =
(
−iγ2L∗i

)†
γ0.

† LiCLj is symmetric on i and j due to Fermi statistics, so we can take γij to be symmetric as
well.



14.4 Quark flavor violation 175

(ii) Once the neutrinos acquire a mass their gauge eigenstates and mass

eigenstates can be different. This provides a mechanism for the ob-

served phenomenon of neutrino flavor oscillations. (By gauge eigen-

states I mean the states νe, νµ, ντ that form SU(2)L doublets with

the charged leptons.)

14.4 Quark flavor violation

As we’ve seen, lepton flavor is accidentally conserved in the standard model.

Quark flavor, on the other hand, is violated at the renormalizable level. But

the flavor violation has a rather restricted form: as we saw in section 12.3

it only occurs via the CKM matrix in the quark – quark – W± couplings.

A surprising feature of the standard model that the couplings of the Z

conserve flavor – that is, that there are no flavor-changing neutral currents

in the standard model.

The absence of flavor-changing neutral currents means that certain flavor-

violating processes, while allowed, can only occur at the loop level. What’s

more, the loop diagrams often turn out to be anomalously small, due to

an approximate cancellation known as the “GIM mechanism.” This can be

nicely illustrated with kaon decays. First consider the decay K+ → π0e+νe,

which has an observed branching ratio of around 5%. At the quark level

this decay occurs via a tree diagram involving W exchange.

K+

{
_
u

ν

s

W

u u
_

+

e+

e

}
π0

Compare this to the decay K+ → π+ν̄eνe. Due to the absence of flavor-
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changing neutral currents, this decay can only take place via a loop diagram.

K+


uu

Z

u,c,t

s
_

d
_

_
νe

νe

W

 π+

Since the diagram involves two additional vertices and one additional loop

integral, one might expect that the amplitude is down by a factor g2/16π2 =

αW /4π where αW = g2/4π = 1/29 is the weak analog of the fine structure

constant.† The branching ratio should then be down by a factor (αW /4π)2 ∼
10−5. But current measurements give a branching ratio, summed over neu-

trino flavors, of

BR(K+ → π+ν̄ν) = 1.5+1.3
−0.9 × 10−10 .

Clearly some additional suppression is called for. This is provided by the

GIM mechanism. To see how it works, look at the contribution to the

amplitude coming from the lower quark line.∑
i=u,c,t

∫
d4p

(2π)4
v̄(s)

(
− ig

2
√

2
γµ(1− γ5)(V †)si

)
i

p/−mi

(
− igZ

2
(cV iγ

ν − cAiγνγ5)

)
i

p/− q/−mi

(
− ig

2
√

2
γλ(1− γ5)Vid

)
v(d)

If the quark masses were equal this would be proportional to
∑

i(V
†)siVid,

which vanishes by unitarity of the CKM matrix. More generally the am-

plitude picks up a GIM suppression factor, M ∼ ∑i(V
†)siVid f(m2

i /m
2
W ).

One can estimate the behavior of the function f(x) by expanding the quark

propagator in powers of the quark mass,

1

p/−mi
=

p/

p2
+
mi

p2
+
m2
i p/

p4
+ · · · .

The zeroth order terms all cancel, since they correspond to having equal

(vanishing) quark masses. The first order terms vanish by chirality, since

† A factor 1/16π2 is usually associated with each loop integral, as discussed on p. 102.
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(1 − γ5)(odd # γ’s)(1 − γ5) = 0. The second order terms leave you with a

GIM suppression factor
∑

i(V
†)siVidm2

i /m
2
W .‡ This factor suppresses the

contributions of the up and charm quarks; the top quark contribution is sup-

pressed by the small mixing with the third generation. Taking all this into

account leads to the current theoretical estimate for the branching ratio,§

BR(K+ → π+ν̄ν) = (8.4± 1.0)× 10−11 .

This might seem like a remarkable but obscure prediction of the standard

model. But experimental tests of this small branching ratio have far-reaching

consequences. Almost every extension of the standard model introduces new

sources of flavor violation, which could easily overwhelm the tiny standard

model prediction. So limits on rare flavor-violating processes provide some

of the most stringent constraints on beyond-the-standard model physics.

14.5 CP violation

As we’ve seen the CKM matrix involves three mixing angles between the

different generations plus one complex phase. The complex phase turns out

to be the only source for CP violation in the standard model.† It’s remark-

able that with two generations the considerations of section 12.3 would show

that the CKM matrix is real: a 2 × 2 orthogonal matrix parametrized by

the Cabibbo angle. So in this sense CP violation is a bonus feature of the

standard model associated with having three generations.

To see that CP is violated consider a tree-level decay ui → djW
+. Both

the up-type and down-type quarks ui, dj must sit in left-handed spinors to

couple to the W . Neglecting quark masses for simplicity, this means they’re

both left-handed particles. So indicating helicity with a subscript, we can

denote this decay uLi → dLjW
+. Under a parity transformation the quark

momentum changes sign, while the quark spin is invariant, so the helicity

flips and the parity-transformed process is

P : uRi → dRjW
+ .

This decay doesn’t occur at tree level, which should be no surprise – parity is

maximally violated by the weak interactions. Charge conjugation exchanges

‡ One also has to worry about the divergence structure of the remaining loop integral, which in
the case at hand turns out to give an extra factor of logm2

i /m
2
W .

§ The theoretical status is reviewed in C. Smith, arXiv:hep-ph/0703039.
† Leaving aside a topological term built from the gluon field strength εµνλσTr (GµνGλσ) that

can be added to the QCD Lagrangian.
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particles with antiparticles while leaving helicity unchanged. So the charge

conjugate of our original process is

C : ūLi → d̄LjW
− .

But this decay doesn’t occur at tree level either (the left-handed antiparticles

sit in right-handed spinors which don’t couple to the W ). Again, no surprise,

since C is also maximally violated by the weak interactions. If we apply the

combined transformation CP we get an allowed tree-level process, ūRi →
d̄RjW

−. Does this mean CP is a symmetry? Compare the amplitudes:

u i

L j

W+

d

L ∼ (V †)ji = V ∗ij

j

_
Ri

W

d

_

_
R

u ∼ Vij

If the CKM matrix is not real then CP is violated.† One can reach the

same conclusion, of course, by studying how CP acts on the standard model

Lagrangian.

The classic evidence for CP violation comes from the neutral kaon system.

The strong-interaction eigenstates K0, K̄0 transform into each other under

CP .

CP |K0〉 = |K̄0〉 CP |K̄0〉 = |K0〉

We can form CP eigenstates

|Keven〉 =
1√
2

(
|K0〉+ |K̄0〉

)
|Kodd〉 =

1√
2

(
|K〉0 − |K̄0〉

)
.

† For the particular process we are considering we could redefine the phases of our initial and final
states to make the amplitude real. To have observable CP violation all three generations of
quarks must be involved so the complex phase can’t be eliminated by a field redefinition. Also
more than one diagram must contribute, so that relative phases of diagrams can be observed
through interference.
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If there were no CP violation then |Keven〉 and |Kodd〉 would be the exact

mass eigenstates. But the weak interactions which generate mixing between

K0 and K̄0 violate CP . The actual mass eigenstates K0
L, K0

S are not CP

eigenstates, as shown by the fact that K0
L decays to both 2π and 3π final

states (CP even and odd, respectively) with branching ratios

BR(K0
L → ππ) = 3.0× 10−3

BR(K0
L → πππ) = 34%

This mixing gives rise to a mass splitting mK0
L
− mK0

S
= 3.5 × 10−6 eV.

This is another example of a GIM-suppressed quantity, as one can see by

examining the diagrams responsible for the mixing:

u,c,t

_
d
_

W W

u,c,t
d

_
s

d

u,c,tu,c,t

W

W _
s

d ss

With equal quark masses the diagram would vanish by unitarity of the CKM

matrix.

14.6 Custodial SU(2)

The sector of the standard model which is least satisfactory (from a theo-

retical point of view) and least well-tested (from an experimental point of

view) is the sector associated with electroweak symmetry breaking. In the

standard model the Higgs doublet seems put in by hand, for no other reason

than to break electroweak symmetry, and we have no direct experimental ev-

idence that a physical Higgs particle exists. You might think the only thing

we know for sure is that the gauge symmetry is broken from SU(2)L×U(1)Y
to U(1)em, with three would-be Goldstone bosons that get eaten to become

the longitudinal polarizations of the W and Z bosons.

This is a little too pessimistic: there are some robust statements we can

make about the nature of electroweak symmetry breaking. To see this it’s

useful to begin by rewriting the Higgs Lagrangian. Normally, neglecting all

gauge couplings, we’d write the pure Higgs sector of the standard model in
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terms of an SU(2)L doublet φ =
(
φ+

φ0

)
.

Lpure Higgs = ∂µφ
†∂µφ+ µ2φ†φ− λ(φ†φ)2

The conjugate Higgs doublet is defined by φ̃ = εφ∗ =
(
φ0∗

−φ−
)

. Although φ̃

is not an independent field, it’s useful to treat φ and φ̃ on the same footing.

To do this we define a 2× 2 complex matrix

Σ =
√

2
(
φ̃, φ

)
=
√

2

(
φ0∗ φ+

−φ− φ0

)
.

This matrix satisfies

Σ†Σ = 2φ†φ11 det Σ = 2φ†φ Σ∗ = σ2Σσ2

(the last relation is a “pseudo-reality condition”). In any case, in terms of

Σ, the pure Higgs Lagrangian is

Lpure Higgs =
1

4
Tr
(
∂µΣ†∂µΣ

)
+

1

4
µ2Tr

(
Σ†Σ

)
− 1

16
λ
(

Tr(Σ†Σ)
)2

.

Written in this way it’s clear that Lpure Higgs has an SU(2)L × SU(2)R

global symmetry which acts on Σ as Σ → LΣR† for L,R ∈ SU(2). In fact

Lpure Higgs is nothing but the O(4) linear σ-model from problem 5.4! The

curious fact is that Lpure Higgs has a larger symmetry group than is strictly

necessary – larger, that is, than the SU(2)L×U(1)Y gauge symmetry of the

standard model.

Let’s proceed to couple Lpure Higgs to the electroweak gauge fields. An

SU(2)L × U(1)Y gauge transformation of φ,

φ(x)→ e−igα
a(x)σa/2e−ig

′α(x)/2φ(x) ,

corresponds to the following transformation of Σ.

Σ(x)→ e−igα
a(x)σa/2Σ(x)eig

′α(x)σ3/2

This shows that the SU(2)L gauge symmetry of the standard model is iden-

tified with the SU(2)L symmetry of Lpure Higgs, while U(1)Y is embedded

as a subgroup of SU(2)R. The covariant derivative becomes

DµΣ = ∂µΣ +
ig

2
W a
µσ

aΣ− ig′

2
ΣBµσ

3 .

In this notation the Higgs sector of the standard model is

LHiggs =
1

4
Tr
(
DµΣ†DµΣ

)
+

1

4
µ2Tr

(
Σ†Σ

)
− 1

16
λ
(

Tr(Σ†Σ)
)2

.
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The analysis of electroweak symmetry breaking is straightforward: the Higgs

potential is minimized when φ†φ = 1
2v

2, or equivalently when Σ†Σ = v211.

The space of vacua is given by

{Σ = vU : U ∈ SU(2)} .
All these vacua are gauge-equivalent. Choosing any particular vacuum

breaks SU(2)L × U(1)Y → U(1)em.

The interesting observation is that the pure Higgs sector of the standard

model has a larger symmetry than required for gauge invariance. The extra

SU(2)R symmetry of the pure Higgs Lagrangian is known as “custodial

SU(2)”.† It is not a symmetry of the entire standard model – it’s broken

explicitly by the couplings of the hypercharge gauge boson, which pick out

a U(1)Y subgroup of SU(2)R, as well as by the quark Yukawa couplings.

Despite this explicit breaking, custodial SU(2) has observable consequences.

In particular, as you’ll show on the homework, it enforces the tree-level re-

lation

ρ ≡ m2
W

m2
Z cos2 θW

= 1 .

The observed value is‡
ρ = 1.0106± 0.0006 .

The fact that the tree-level relation is satisfied to roughly 1% accuracy

is strong evidence that the mechanism for electroweak symmetry breaking

must have a custodial SU(2) symmetry. (Small deviations from ρ = 1 can

be understood as arising from radiative corrections in the standard model.)

To appreciate these statements let’s be completely general in our approach

to electroweak symmetry breaking. We don’t really know that the standard

model Higgs doublet exists, but we are certain that the gauge symmetry is

broken. On general grounds there must be three would-be Goldstone bosons

that get eaten to provide the longitudinal polarizations of the W and Z

bosons. The Goldstones can be packaged into a matrix U ∈ SU(2).§ Up to

two derivatives, the most general action for the Goldstones with SU(2)L ×
U(1)Y symmetry is

LGoldstone =
1

4
v2Tr

(
DµU †DµU

)
+

1

4
cv2Tr

(
U †DµUσ3

)
Tr
(
U †DµUσ3

)
.

† Note that some authors use the term custodial SU(2) to refer to the diagonal subgroup of
SU(2)L × SU(2)R.
‡ The quoted value is for the quantity denoted ρ̂ in the particle data book.
§ The space of vacua is (SU(2)L × U(1)Y ) /U(1)em, which is topologically a three dimensional

sphere. Points on a 3-sphere can be labeled by SU(2) matrices.
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Here v and c are constants and the covariant derivative is

DµU = ∂µU +
ig

2
W a
µσ

aU − ig′

2
UBµσ

3 .

The first term in the Lagrangian is exactly what we get from the standard

model by setting Σ = vU in LHiggs. It has custodial SU(2) symmetry if you

neglect the hypercharge gauge boson. The second term in the Lagrangian

violates custodial SU(2). In the standard model it only arises from operators

of dimension 6 or higher; for this reason custodial SU(2) should be regarded

as an accidental symmetry of the standard model. The key point is that

in a model for electroweak symmetry breaking without custodial SU(2) one

would expect c to be O(1). This would make O(1) corrections to the relation

ρ = 1, in drastic conflict with observation.
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Exercises

14.1 Unitarity made easy

At very high energies it shouldn’t matter whether the standard

model gauge symmetry is broken or unbroken. Suppose it’s unbroken

(if you like, take µ2 < 0 in the Higgs potential).

(i) Use tree-level unitarity to bound the Higgs coupling λ by consid-

ering φ+ – φ− scattering coming from the diagram

+

_
φ

φ+

_
φ

φ

Here we’re writing the Higgs doublet as φ =

(
φ+

φ0

)
with φ− =
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(φ+)
∗
. Other diagrams contribute, but this one dominates for

large λ.

(ii) Is your result equivalent to the bound on the Higgs mass (14.2)

we obtained from studying W+
LW

−
L →W+

LW
−
L ?

14.2 See-saw mechanism

There’s an appealing extension of the standard model which gen-

erates small Majorana neutrino masses. Introduce a collection of

ns right-handed neutrinos, described by a collection of right-handed

gauge singlet spinor fields νRa, a = 1, . . . , ns (s stands for sterile).

Since these fields are gauge singlets they can have Majorana mass

terms. The general renormalizable, gauge-invariant Lagrangian de-

scribing the left- and right-handed neutrinos and their couplings to

the Higgs is then

Lν = −1

2
MabνRaCνRj − ΛνiaL̄iφ̃νRa + c.c.

Let’s imagine that the right-handed neutrinos are very heavy, with

Mab � v (there’s no reason for Mab to be tied to the electroweak

symmetry breaking scale). Use the equations of motion for the right-

handed neutrinos ∂Lν
∂νRa

= 0 to write down a low-energy effective La-

grangian involving just the Higgs field and the left-handed doublets.

If you want to think in terms of Feynman diagrams, this is equivalent

to evaluating the diagram

φ

R

L

φ

L

ν

where we’re neglecting the momentum dependence of the right-handed

neutrino propagator. Show that this procedure induces precisely the

operator (14.5), and read off the mass matrix for the left-handed

neutrinos. This is known as the see-saw mechanism: the heavier

the right-handed neutrinos are, the lighter the left-handed neutrinos

become.
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14.3 Custodial SU(2) and the ρ parameter

Consider the most general two-derivative action for the Goldstone

bosons associated with electroweak symmetry breaking.

L =
1

4
v2Tr

(
DµU †DµU

)
+

1

4
cv2Tr

(
U †DµUσ3

)
Tr
(
U †DµUσ3

)
Here U ∈ SU(2) is the field describing the Goldstones, with covariant

derivative

DµU = ∂µU +
ig

2
W a
µσ

aU − ig′

2
UBµσ

3 .

Evaluate the W and Z masses in this model. Express the “ρ param-

eter” ρ =
m2
W

m2
Z cos2 θW

in terms of c.

14.4 Quark masses and custodial SU(2) violation

Suppose we require that custodial SU(2) be a symmetry of the

quark Yukawa Lagrangian

Lquark Yukawa = −ΛdijQ̄iφdRj − ΛuijQ̄iφ̃uRj + c.c.

What would this imply about the spectrum of quark masses? What

would this imply about the CKM matrix?

14.5 Strong interactions and electroweak symmetry breaking

Consider a theory which resembles the standard model in every

respect except that it doesn’t have a Higgs field. You can get the

Lagrangian for this theory by setting φ = 0 in the standard model

Lagrangian; the Dirac and Yang-Mills terms survive while the Higgs

and Yukawa terms drop out. In such a theory, what are the masses

of the W and Z bosons?

Before your answer “zero,” recall the effective Lagrangian for chiral

symmetry breaking by the strong interactions, L = 1
4f

2Tr
(
∂µU

†∂µU
)
.

Let’s concentrate on the up and down quarks so that U is an SU(2)

matrix. As discussed in chapter 6 it’s related to the chiral condensate

by

〈0|ψLψ̄R|0〉 = µ3U ⊗ 1

2
(1− γ5) ψ =

(
u

d

)
where we’ve indicated the flavor ⊗ spin structure of the condensate

on the right hand side.

(i) By introducing a suitable covariant derivative, write the effec-

tive Lagrangian which describes the couplings between U and the

SU(2)L × U(1)Y gauge fields Wµ, Bµ.
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(ii) Compute the W and Z masses in terms of f and the SU(2)L ×
U(1)Y gauge couplings g, g′.

(iii) In this model, what particles get eaten to give the W and Z

bosons a mass?

(iv) Does this model have a custodial SU(2) symmetry?

(v) In the real world, taking both the Higgs field and QCD effects

into account, what are the masses of theW and Z bosons? Express

your answer in terms of f, g, g′ and the Higgs vev v. Hint: think in

terms of effective Lagrangians for the would-be Goldstone bosons.

This sort of idea – generating masses from underlying strongly-

coupled gauge dynamics – is the basis for what are known as tech-

nicolor models of electroweak symmetry breaking.

14.6 S and T parameters

A useful way to think about beyond-the-standard-model physics is

to encode the effects of any new physics in the coefficients of higher-

dimension operators which are added to the standard model La-

grangian. At dimension 5 there’s a unique operator one can add

which we encountered when we discussed neutrino masses. At di-

mension 6 there are quite a few possible operators.† The two which

have attracted the most attention correspond to the S and T param-

eters of Peskin and Takeuchi. They can be defined by the dimension

6 Lagrangian

Ldim 6 =
gg′

16πv2
Sφ†σaφW a

µνB
µν − 2α

v2
T (φ†Dµφ)(Dµφ†φ) .

Here g and g′ are standard model gauge couplings, v is the Higgs

vev, α is the fine structure constant, φ is the Higgs doublet, W a
µν

and Bµν are field strengths, and the constants S and T parametrize

new physics.

(i) In the notation of section 14.6 a particular vacuum state can be

characterized by Σ = vU for some U ∈ SU(2). Evaluate Ldim 6
at low energies and show that it reduces to

− gg
′

64π
S Tr (U †σaUσ3)W a

µνB
µν+

1

8
αv2T Tr (U †DµUσ3)Tr (U †DµUσ3) .

(ii) In unitary gauge one conventionally sets U = 11. Evaluate your

† They’re classified in W. Buchmuller and D. Wyler, Nucl. Phys. B268 (1986) 621.
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result from part (i) in unitary gauge and show that to quadratic

order in the fields it reduces to

−1

8
αS

(
FµνF

µν − ZµνZµν +
cos2 θW − sin2 θW

cos θW sin θW
FµνZ

µν

)
−1

2
αm2

ZTZµZ
µ .

Here Fµν is the field strength of electromagnetism and Zµν is the

abelian field strength associated with the Z boson. The fields

Aµ and Zµ have their usual standard model definitions; note that

when Ldim 6 is added they no longer have canonical kinetic terms.

Also mZ is the usual standard model definition of the Z mass; note

that when Ldim 6 is added it no longer corresponds to the physical

Z mass.

14.7 B − L as a gauge symmetry

The standard model has an accidental global symmetry corre-

sponding to conservation of B − L. This symmetry can be gauged

as follows. Consider the electroweak interactions of a single gener-

ation of quarks and leptons and promote the gauge symmetry to

SU(2)L×U(1)Y ×U(1)B−L. To the usual standard model fields add

a right-handed neutrino νR and a complex scalar field χ. Overall we

have fields with quantum numbers

L (2,−1,−1)

eR (1,−2,−1)

Q (2, 1/3, 1/3)

uR (1, 4/3, 1/3)

dR (1,−2/3, 1/3)

φ (2, 1, 0)

φ̃ (2,−1, 0)

νR (1, 0,−1)

χ (1, 0, 1)

So for instance the covariant derivative of νR is

DµνR = ∂µνR + ig̃(−1)CµνR

where Cµ is the U(1)B−L gauge field and g̃ is its coupling constant.

(i) Show that, thanks to νR, the U(1)B−L symmetry is anomaly-free.

(ii) If left unbroken U(1)B−L would mediate a Coulomb-like force

with B−L playing the role of electric charge. To cure this suppose

the Higgs Lagrangian

LHiggs = Dµφ†Dµφ+Dµχ∗Dµχ− V (φ†φ, χ∗χ)
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is such that the scalar fields acquire vevs.

〈0|φ|0〉 =

(
0

v/
√

2

)
〈0|χ|0〉 = ṽ/

√
2

We’ll have in mind that ṽ � v. Add additional kinetic terms to

the Yang-Mills Lagrangian:

LYang−Mills = (standard model)− 1

4
CµνC

µν − 1

2
aBµνC

µν

Here Cµν is the U(1)B−L field strength. The parameter a rep-

resents kinetic mixing between the hypercharge and B − L gauge

fields. Expand about the vacuum state and write down the quadratic

action for the gauge bosons W 3
µ , Bµ, Cµ.

(iii) To have positive-definite kinetic terms we must have −1 < a <

1. Set a = sinα and show that the kinetic terms can be diagonal-

ized by setting W 3
µ

Bµ
Cµ

 =

 1 0 0

0 1 − tanα

0 0 1/ cosα


 Ŵ 3

µ

B̂µ
Ĉµ


Show that the mass matrix can then be diagonalized by setting Âµ

Ẑµ
Ĉµ

 =

 1 0 0

0 cosβ sinβ

0 − sinβ cosβ

 Aµ
Zµ
Z ′µ


where

Âµ =
g′Ŵ 3

µ + gB̂µ√
g2 + g′2

Ẑµ =
gŴ 3

µ − g′B̂µ√
g2 + g′2

are the standard model photon and Z. Assuming ṽ � v show that

β ≈ gg′v2 sin(2α)/8g̃2ṽ2.

(iv) For ṽ � v the mixing angle β is small. At leading order in β

determine

• the masses of the A, Z and Z ′ bosons

• the currents to which they couple

Are these results corrected at higher orders in β?

Remarks: additional U(1) gauge groups arise in many extensions

of the standard model. In general anomaly cancellation tightly con-

strains the allowed matter content and quantum numbers. Since

B − L is an accidental symmetry of the standard model, it can be
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spontaneously broken without significant observable consequences:

there’s no way to directly couple the symmetry-breaking vev ṽ to the

standard model at the renormalizeable level. At leading order in β

the Z boson behaves just as in the standard model, but this gets cor-

rected at higher orders. Finally in this model a term in the Yukawa

Lagrangian −λνL̄φ̃νR + c.c. could give neutrinos a large Dirac mass.

Possible cures for this problem are reviewed in P. Langacker, The

physics of heavy Z ′ gauge bosons, arXiv:0801.1345.
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Epilogue: in praise of the standard model Physics 85200

January 8, 2015

A good figure of merit for a theory is the ratio of results to assumptions.

By this measure the standard model is impressive indeed. Given a fairly

short list of assumptions – just the gauge group and matter content – the

standard model is the most general renormalizable theory consistent with

Lorentz and gauge invariance. The assumptions are open to criticism, for

example

• the choice of gauge group seems a little peculiar

• the fermion representations are more complicated than one might have

wished

• it’s not clear why there should be three generations

• aside from simplicity, postulating a single Higgs doublet has very little

motivation (experimental or otherwise)

Given these assumptions one gets a quite predictive theory. It depends on

a total of 18 parameters.†

• 3 gauge couplings

• 2 parameters in the Higgs potential

• 9 quark and lepton masses

• 4 parameters in the CKM matrix

This isn’t entirely satisfactory. The fermion masses and mixings, in particu-

lar, introduce more free parameters than one would like, and their observed

values seem to exhibit peculiar hierarchies. The Higgs mass parameter µ2

is also a puzzle. What sets its value? In fact, why should it be positive

† leaving aside certain topological terms in the action

190
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(equivalently, why should electroweak gauge symmetry get broken)? But

given these inputs look at what we get out:

• cancellation of gauge anomalies

• accidental baryon and lepton number conservation†
• accidental conservation of electron, muon, and tau number

• with three light quarks, an approximate SU(3)L × SU(3)R symmetry of

the strong interactions

• with a single Higgs doublet, a custodial SU(2) symmetry of the elec-

troweak symmetry breaking sector

• massless neutrinos at the renormalizable level

• a natural explanation for small neutrino masses from dimension-5 opera-

tors

• absence of tree-level flavor changing neutral currents

• the GIM mechanism for suppressing flavor violation in loops

• with three generations, a mechanism for CP violation by the weak inter-

actions

In the end, of course, the best thing about the standard model is that it fits

the data. At low energies it incorporates all the successes of 4-Fermi theory

and the SU(3)L×SU(3)R symmetry of the strong interactions, and at high

energies it fits the precision electroweak measurements carried out at LEP

and SLC.

I wish I could say there was an extension of the standard model that was

nearly as compelling as the standard model itself. Various extensions of

the standard model have been proposed, each of which has some attractive

features, but all of which have drawbacks. So far no one theory has emerged

as a clear favorite. Only time, and perhaps the LHC, will tell us what lies

beyond the standard model.

Note added: On July 4, 2012 the ATLAS and CMS experiments an-

nounced the discovery of a particle with a mass of 125 GeV which appears

to be the Higgs boson predicted by the standard model: ATLAS Collabo-

ration, Observation of a new particle in the search for the standard model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716, 1

(2012), arXiv:1207.7214; CMS Collaboration, Observation of a new boson

at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.

B716, 30 (2012).

† strictly speaking B + L is violated by a quantum anomaly
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Perhaps the simplest example is a real scalar field φ with Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 .

In this case the Feynman rules are

p

φ propagator i
p2 −m2

φ4 vertex −iλ

Here p is the 4-momentum flowing through the line. QED is somewhat

more complicated: it’s a Dirac spinor field coupled to a gauge field with

Lagrangian

L = ψ̄
[
iγµ(∂µ + ieQAµ)−m

]
ψ − 1

4
FµνF

µν .

The corresponding Feynman rules are (with the notation p/≡ γµpµ)

192
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p

electron propagator
i(p/ +m)

p2 −m2

k

µ ν photon propagator
−igµν
k2

µ electron – photon vertex −ieQγµ

Here Q is the charge of the field measured in units of e =
√

4πα, for example

Q = −1 for the electron/positron field. The arrows on the lines indicate the

direction of “particle flow,” for particles that have distinct antiparticles. We

also have factors to indicate the polarizations of the external lines

p

λ outgoing electron ū(p, λ)

p

λ incoming electron u(p, λ)

p

λ outgoing positron v(p, λ)

p

λ incoming positron v̄(p, λ)

p

λ outgoing photon εµ∗(p, λ)

p

λ incoming photon εµ(p, λ)

Here λ is a label that specifies the polarization of the particle. Explicit

expressions are given in Peskin & Schroeder appendix A.2. Fortunately for

most purposes all we’ll need are the completeness relations∑
λ

u(p, λ)ū(p, λ) = p/ +m∑
λ

v(p, λ)v̄(p, λ) = p/−m∑
λ

ε∗µ(p, λ)εν(p, λ) = −gµν
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One can also consider the electrodynamics of a complex scalar field, with

Lagrangian

L = (∂µφ
∗ − ieQAµφ∗) (∂µφ+ ieQAµφ)−m2φ∗φ− 1

4
FµνF

µν .

In this case the interaction vertices are

’

p

p

µ −ieQ(p+ p′)µ

ν

µ

2ie2Q2gµν

where the dashed line represents the scalar field.

In practice given a Lagrangian one can read off the Feynman rules as

follows. First split the Lagrangian into free and interacting parts. The free

part, which is necessarily quadratic in the fields, determines the propaga-

tors as described in section 9.2. Each term in the interacting part of the

Lagrangian corresponds to a vertex, where the vertex factor can be obtained

from the Lagrangian by the following recipe.

1. Erase the fields.

2. Multiply by i.

3. If there was a derivative operator ∂µ acting on a field, replace it with

−ikµ where kµ is the incoming momentum of the corresponding line.

4. Multiply by s! for each group of s identical particles.

Given these rules it’s just a matter of putting the pieces together: the

sum of all Feynman diagrams gives −i times the amplitude M for a given

process. For example, for e+e− → µ+µ− the lowest-order Feynman diagram

is
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_

2
p

3

p
1

p
1

p
2

+

µ+

_
µe+

p
4

e

p

Note that we’re imposing 4-momentum conservation at every vertex. Work-

ing backwards along the fermion lines the diagram is equal to

−iM = v̄(p2, λ2)(−ieQγµ)u(p1, λ1)
−igµν

(p1 + p2)2
ū(p3, λ3)(−ieQγν)v(p4, λ4)

so that

M = − e2

(p1 + p2)2
v̄(p2, λ2)γµu(p1, λ1)ū(p3, λ3)γµv(p4, λ4) .

We’re really interested in the transition probability, which is determined by

(recall ū ≡ u†γ0)

|M|2 =
e4

(p1 + p2)4
v̄(p2, λ2)γµu(p1, λ1)u†(p1, λ1)γ†νγ

0†v(p2, λ2)

ū(p3, λ3)γµv(p4, λ4)v†(p4, λ4)γν†γ0†u(p3, λ3)

We’ll work in the chiral basis for the Dirac matrices, namely

γ0 =

(
0 11
11 0

)
γi =

(
0 σi

−σi 0

)
satisfying {γµ, γν} = 2gµν , γ0† = γ0 and γi† = −γi. Note that γ0γµ†γ0 = γµ.

Then

|M|2 =
e4

(p1 + p2)4
v̄(p2, λ2)γµu(p1, λ1)ū(p1, λ1)γνv(p2, λ2)

ū(p3, λ3)γµv(p4, λ4)v̄(p4, λ4)γνu(p3, λ3)

=
e4

(p1 + p2)4
Tr (γµu(p1, λ1)ū(p1, λ1)γνv(p2, λ2)v̄(p2, λ2))

Tr (γµv(p4, λ4)v̄(p4, λ4)γνu(p3, λ3)ū(p3, λ3))

If we’re interested in unpolarized scattering we should average over initial

spins and sum over final spins. This gives rise to the spin-averaged amplitude

〈|M|2〉 =
1

4

∑
λ1λ2λ3λ4

|M|2
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=
e4

4(p1 + p2)4
Tr (γµ(p/1 +me)γν(p/2 −me)) Tr (γµ(p/4 −mµ)γν(p/3 +mµ))

where we’ve used the completeness relations to do the spin sums. For sim-

plicity let’s set me = mµ = 0, so that

〈|M|2〉 =
e4

4(p1 + p2)4
Tr (γµp/1γνp/2) Tr (γµp/4γ

νp/3) .

Now we use the trace theorem

Tr(γµγλγνγσ) = 4(gµλgνσ − gµνgλσ + gµσgλν)

to get

〈|M|2〉 =
8e4

(p1 + p2)4
(p1 · p3 p2 · p4 + p1 · p4 p2 · p3) .

With massless external particles momentum conservation p1 + p2 = p3 + p4

implies that p1 · p3 = p2 · p4 and p1 · p4 = p2 · p3, so

〈|M|2〉 =
8e4

(p1 + p2)4

(
(p1 · p3)2 + (p1 · p4)2

)
.

At this point one has to plug in some explicit kinematics. Let’s work in the

center of mass frame, with scattering angle θ.

p1 = (E, 0, 0, E)

p2 = (E, 0, 0,−E)

p3 = (E,E sin θ, 0, E cos θ)

p4 = (E,−E sin θ, 0,−E cos θ)

The spin-averaged amplitude is just

〈|M|2〉 = e4(1 + cos2 θ) .

We had to do a lot of work to get such a simple result! In general the center

of mass differential cross section is given by(
dσ

dΩ

)
c.m.

=
1

64π2s

|~p3|
|~p1|
〈|M|2〉 (A.1)

where s = (p1 + p2)2 and |~p1|, |~p3| are the magnitudes of the spatial 3-

momenta. So finally our differential cross section is(
dσ

dΩ

)
c.m.

=
e4

256π2E2
(1 + cos2 θ) .
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The total cross section is given by integrating this over angles.

σ = 2π

∫ 1

−1
d(cos θ)

dσ

dΩ
=

e4

48πE2

This illustrates the basic process of evaluating a cross-section using Feynman

diagrams. However there are a few subtle points that didn’t come up in this

simple example. In particular

• If there are undetermined internal loop momenta p in a diagram we should

integrate over them with
∫ d4p

(2π)4 .

• If there are identical particles in the final state then (A.1) is still correct.

However in computing the total cross section one should only integrate

over angles corresponding to inequivalent final configurations. See Peskin

& Schroeder p. 108.

• Every internal closed fermion loop multiplies the diagram by (−1). This

follows from Fermi statistics: Peskin & Schroeder p. 120.

• When summing diagrams there are sometimes relative (−) signs if the

external lines obey Fermi statistics. See Griffiths pp. 231 and 235 or

Peskin & Schroeder p. 119.

• In some cases diagrams have to be multiplied by combinatoric “symmetry

factors.” These arise if a change in the internal lines of a diagram actually

gives the same diagram back again. See Peskin & Schroeder p. 93.

References

Griffiths does a nice job of presenting the Feynman rules for electrodynamics

in sections 7.5 – 7.8. The process e+e− → µ+µ− is studied in detail in Peskin

& Schroeder section 5.1.

Exercises

A.1 ABCψ theory

Consider a theory with three real scalar fields A,B,C and one

Dirac spinor field ψ. The masses of these particles aremA,mB,mC ,mψ
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and the interaction vertices are

B

A

C − ig1

_

C

ψ

ψ

− ig2

(i) Compute the partial width for the decay C → ψψ̄, assuming

mC > 2mψ.

(ii) Compute the differential cross section for AB → ψψ̄.

(iii) Find the total cross section for AB → ψψ̄.
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Consider a scattering process a+b→ c+d. Let’s work in the center of mass

frame, with initial and final states of definite helicity. We denote

E = total center of mass energy

p = spatial momentum of either incoming particle

θ = center of mass scattering angle

That is, we take our incoming particles to have 4-momenta

pa = (Ea, 0, 0, p) pb = (Eb, 0, 0,−p)
with E = Ea +Eb. We denote the helicities of the particles by λa, λb, λc, λd.

Our goal is to decompose the scattering amplitude into states of definite

total angular momentum J . At first sight, this is a complicated problem:

it seems we have to add the two spins plus whatever orbital angular mo-

mentum might be present. The analysis can be simplified by noting that

the helicity (≡ component of spin along the direction of motion) is a scalar

quantity, invariant under spatial rotations. It therefore commutes with the

total angular momentum. This means we can label our initial state

|E, J, Jz, λa, λb〉
by giving the center of mass energy E, the total angular momentum J , the z

component Jz, and the two helicities λa, λb. In fact Jz is not an independent

quantity. Our incoming particles have definite spatial momenta, described

by wavefunctions

ψa ∼ eipz ψb ∼ e−ipz .
These wavefunctions are invariant under rotations in the xy plane, so the

z component of the orbital angular momentum of the initial state vanishes,
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d

θ

b
λ

λ a

λ c

p
a

dλ

p
b

p
c

p

Fig. B.1. A picture of the reaction: spatial momenta indicated by large arrows,
helicities indicated by small arrows.

Lz = 0. This means Jz just comes from the helicities, and the initial state

has Jz = λa − λb. Similar reasoning shows that we can label our final state

by

|E, J, Jθ, λc, λd〉 .
Here E and J are the (conserved!) total energy and angular momentum of

the system, while Jθ is the component of J along the direction of particle c.

As before we have Jθ = λc − λd.
With these preliminaries in hand it’s easy to determine the angular de-

pendence of the scattering amplitude. The initial state can be regarded as

an angular momentum eigenstate |J, Jz = λ〉 where λ = λa − λb. The final

state can be regarded as an eigenstate |J, Jθ = µ〉 where µ = λc − λd. We

can make the final state by starting with a Jz eigenstate and applying a

spatial rotation through an angle θ about (say) the negative y axis.

|J, Jθ = µ〉 = eiθĴy |J, Jz = µ〉
Here Ĵy is the y component of the angular momentum operator. The θ-

dependence of the scattering amplitude is given by the inner product of the

initial and final states.

M ∼ 〈J, Jθ = µ|J, Jz = λ〉
= 〈J, Jz = µ|e−iθĴy |J, Jz = λ〉
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≡ dJµλ(θ) .

The quantity dJµλ(θ) is known as a Wigner function: see Sakurai, Modern

quantum mechanics, p. 192 – 195 and p. 221 – 223.

The angular dependence of a helicity amplitude is determined purely by

group theory. To determine the overall coefficient one has to keep careful

track of the normalization of the initial and final states. This was done

by Jacob and Wick, who showed that the center-of-mass differential cross

section is (
dσ

dΩ

)
c.m.

= |f(θ)|2 (B.1)

where the scattering amplitude f(θ) (normalized slightly differently from

the usual relativistic scattering amplitudeM) can be expanded in a sum of

partial waves.

f(θ) =
1

2i|~p|
∞∑

J=Jmin

(2J + 1) 〈λc λd|SJ(E)− 11|λa λb〉 dJµλ(θ)

Here |~p| is the magnitude of the spatial momentum of either incoming parti-

cle. The sum over partial waves runs in integer steps starting from the min-

imum value Jmin = max(|λ|, |µ|). The helicity states are unit-normalized,

〈λa λb|λ′a λ′b〉 = δλa λ′aδλb λ′b 〈λc λd|λ′c λ′d〉 = δλc λ′cδλd λ′d .

SJ(E) is the S-matrix in the sector with total angular momentum J and

total energy E. You only need to worry about subtracting off the identity

operator if you’re studying elastic scattering, a = c and b = d.

An important special case is when λ = µ = 0, either because the incoming

and outgoing particles are spinless, or because the initial and final states have

no net helicity. In this case J is an integer and

dJ00(θ) = PJ(cos θ)

is a Legendre polynomial (Sakurai, Modern quantum mechanics, p. 202 –

203). The partial wave decomposition reduces to the familiar form

f(θ) =
1

2i|~p|
∞∑
J=0

(2J + 1) 〈λc λd|SJ(E)− 11|λa λb〉PJ(cos θ)

which is also valid in non-relativistic quantum mechanics. At high energies

this goes over to the result (8.5) given in the text.
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In general the Wigner functions satisfy an orthogonality relation∫
dΩ dJµλ(θ)

(
dJ
′
µλ(θ)

)∗
=

4π

2J + 1
δJJ ′ .

One can prove this along the lines of Georgi, Lie algebras in particle physics,

section 1.12. Georgi’s proof applies to finite groups, but the generalization

to SU(2) is straightforward. (If you only want to check the coefficient, write

the left hand side as∫
dΩ 〈J, µ|e−iθĴy |J, λ〉〈J ′, λ|eiθĴy |J ′, µ〉 .

Set J = J ′, sum over λ, and use
∑

λ |J, λ〉〈J, λ| = 11.) Using this in (B.1) we

can express the total cross section for scattering of distinguishable particles

as

σ =
π

|~p|2
∞∑

J=Jmin

(2J + 1)
∣∣∣〈λc λd|SJ(E)− 11|λa λb〉

∣∣∣2 .
As in chapter 8 we have a bound on the partial-wave cross sections for

inelastic scattering, namely

σ =
∑
J

σJ with σJ ≤
π

|~p|2 (2J + 1) .

References

The partial-wave expansion of a helicity amplitude was developed by M. Ja-

cob and G. C. Wick, Ann. Phys. 7, 404 (1959).
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The purpose of this appendix is to study the one-loop QED vacuum polar-

ization diagram

p

µ ν

k k

p + k

This diagram is discussed in every book on field theory. We’ll evaluate it

with a Euclidean momentum cutoff – an unusual approach, but one that

provides an interesting contrast to the anomaly phenomenon discussed in

chapter 13.

The basic amplitude is easy to write down.

−iM = (−1)

∫
d4p

(2π)4
Tr

{
(−ieQγµ)

i(p/ +m)

p2 −m2 (−ieQγν)
i(p/ + k/ +m)

(p+ k)2 −m2

}
(C.1)

(Recall that a closed fermion loop gives a factor of −1. Also note that we

trace over the spinor indices that run around the loop.) Evaluating the trace

−iM = −4e2Q2

∫
d4p

(2π)4

pµ(p+ k)ν + (p+ k)µpν − gµν(p2 + p · k −m2)

(p2 −m2)((p+ k)2 −m2)
.

203
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Adopting a trick due to Feynman, we use the identity

1

AB
=

∫ 1

0

dx

(B + (A−B)x)2

to rewrite the amplitude as

−iM = −4e2Q2

∫
d4p

(2π)4

∫ 1

0
dx

pµ(p+ k)ν + (p+ k)µpν − gµν(p2 + p · k −m2)

(p2 −m2 + (k2 + 2p · k)x)2 .

Now we change variables of integration from pµ to qµ = pµ + kµx.†

−iM = −4e2Q2

∫ 1

0
dx

∫
d4q

(2π)4

2qµqν − gµν(q2 −m2) + (gµνk2 − 2kµkν)x(1− x) + (odd in q)

(q2 + k2x(1− x)−m2)2 .

This might not seem like much of a simplification, but the beauty of Feyn-

man’s trick is that the denominator is Lorentz invariant (it only depends

on q2). Provided we cut off the q integral in a way that preserves Lorentz

invariance‡ we can drop terms in the numerator that are odd in q. We

can also replace qµqν → 1
4g
µνq2. Shuffling terms a bit for reasons that will

become clear later, we’re left with an amplitude which we split up as

−iM = −iM(1) − iM(2) (C.2)

−iM(1) = 2e2Q2gµν
∫ 1

0
dx

∫
d4q

(2π)4

q2 + 2k2x(1− x)− 2m2

(q2 + k2x(1− x)−m2)2 (C.3)

−iM(2) = −4e2Q2(gµνk2 − kµkν)

∫ 1

0
dx

∫
d4q

(2π)4

2x(1− x)

(q2 + k2x(1− x)−m2)2

(C.4)

First let’s study M(1). Defining m̃2 = m2 − k2x(1 − x) we have the

momentum integral∫
d4q

(2π)4

q2 − 2m̃2

(q2 − m̃2)2 = −i
∫

d4qE
(2π)4

q2
E + 2m̃2

(q2
E + m̃2)2

= − i

8π2

∫ Λ

0
dqE

q3
E(q2

E + 2m̃2)

(q2
E + m̃2)2

= − i

16π2

Λ4

Λ2 + m̃2

= − i

16π2

(
Λ2 − m̃2 +O(1/Λ2)

)
† Shifting variables of integration is legitimate for a convergent integral. For a divergent integral

you need to have a cut-off in mind, say |pE | < Λ, and you need to remember that the shift of
integration variables changes the cutoff.
‡ So really a better cutoff to have in mind would be |qE | < Λ.
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where we Wick rotated and introduced a momentum cutoff Λ. Thus

−iM(1) = − ie
2Q2

8π2
gµν

(
Λ2 −m2 +

1

6
k2

)
where we’re neglecting terms that vanish as Λ → ∞. In principle we can

write down a low-energy effective action for the photon Γ[A] which incorpo-

rates the effects of the electron loop. Setting Γ[A] = Γ(1) + · · · and matching

to the amplitude M(1) fixes

Γ(1) = −
∫
d4x

e2Q2

8π2

(
(Λ2 −m2)AµA

µ − 1

6
Aµ∂λ∂

λAµ
)
. (C.5)

We have a photon mass term plus a correction to the photon kinetic term.

What’s disturbing is that none of the terms in (C.5) are gauge invariant.

This seems to contradict our claim in chapter 7 that a low energy effective

action should respect all symmetries of the underlying theory.

The symmetry violation we found is due to the fact that we regulated

the diagram with a momentum cutoff. This breaks gauge invariance and

generates non-invariant terms in the effective action.† However the non-

invariant terms we generated are local, meaning they are of the form Γ(1) =∫
d4xL(1)(x). (This is in contrast to the anomaly phenomenon discussed

in chapter 13 where non-local terms arose.) With local violation a simple

way to restore the symmetry is to modify the action of the underlying the-

ory by subtracting off the induced symmetry-violating terms: that is, by

changing the underlying QED Lagrangian LQED → LQED −L(1). To O(e2)

in perturbation theory this modification exactly compensates for the non-

gauge-invariance of the regulator and yields a gauge-invariant low-energy

effective action. The procedure amounts to just dropping M(1) from the

amplitude. (Another approach, developed in the homework, is to avoid gen-

erating the non-invariant terms in the first place by using a cutoff which

respects the symmetry.)

Having argued that we can discard M(1), let’s return to the amplitude

M(2) given in (C.4). Thanks to the prefactor gµνk2 − kµkν note that M(2)

vanishes when dotted into kµ. This means M(2) corresponds to gauge-

invariant terms in the effective action: terms which are invariant under

Aµ → Aµ + ∂µα, or equivalently under a shift of polarization εµ → εµ + kµ.

† You can think of a momentum cutoff as a cutoff on the eigenvalues of the ordinary derivative
∂µ. Gauge invariance would require a cutoff on the eigenvalues of the covariant derivative
Dµ = ∂µ + ieQAµ.
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So M(2) gives our final result for the vacuum polarization, namely

−iM = −4e2Q2(gµνk2 − kµkν)

∫ 1

0
dx

∫
|qE |<Λ

d4q

(2π)4

2x(1− x)

(q2 + k2x(1− x)−m2)2

(C.6)

where Λ is a momentum cutoff. The integrals can be evaluated but lead

to rather complicated expressions. For most purposes it’s best to leave the

result in the form (C.6).

References

Regulators and symmetries. For more discussion of the connection

between regulators and symmetries of the effective action see section 13.1.3.

Gauge invariant cutoffs. Many gauge-invariant regulators have been

developed. One such scheme, Pauli-Villars regularization, is described in

problem C.1. It’s also discussed by A. Zee, Quantum field theory in a nut-

shell on p. 151 and applied to vacuum polarization in chapter III.7. Another

gauge-invariant scheme, dimensional regularization, is described in Peskin

& Schroeder section 7.5.

Decoupling. Decoupling of heavy particles at low energies is discussed in

Donoghue et. al. section VI-2.

Scheme dependence. The scheme dependence of running couplings, and

the fact that β-functions are scheme independent to two loops, is discussed

in Weinberg vol. II p. 138.

Exercises

C.1 Pauli-Villars regularization

A gauge-invariant scheme for cutting off loop integrals is to sub-

tract the contribution of heavy Pauli-Villars regulator fields. These

are fictitious particles whose masses are chosen to make loop inte-

grals converge. Denoting the vacuum polarization amplitude (C.2)

by −iM(m) we define the Pauli-Villars regulated amplitude by

−iM =

3∑
i=0

−iaiM(mi) .
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Here ai = (1,−1,−1, 1) and mi = (m,M,M,
√

2M2 −m2) have been

chosen so that ∑
i

ai =
∑
i

aim
2
i = 0 .

One says we’ve introduced three Pauli-Villars regulator fields. The

idea is that for fixed Λ we can send M →∞ and recover our original

amplitude. However for fixed M we can send Λ → ∞; in this limit

the regulator mass M serves to cut off the loop integral in a gauge-

invariant way.

(i) Consider the term M(1) in the amplitude. After summing over

regulators show that for fixed M you can send the momentum cut-

off Λ→∞, and show that in this limit M(1) vanishes identically.

This reflects the fact that the effective action is gauge invariant

when you use a gauge-invariant cutoff.

(ii) The termM(2) in the amplitude is only logarithmically divergent

and can be made finite by subtracting the contribution of a single

regulator field. So in the Pauli-Villars scheme our final expression

for the vacuum polarization is

−iM = −4e2Q2(gµνk2−kµkν)

∫ 1

0
dx

∫
d4q

(2π)4

[
2x(1− x)

(q2 + k2x(1− x)−m2)2−(m2 →M2)

]
.

Use this result to find the running coupling e2(M) in the Pauli-

Villars scheme. You could do this, for example, by redoing prob-

lem 7.4 parts (ii) and (iii) with a Pauli-Villars cutoff.

C.2 Mass-dependent renormalization

In problem C.1 you made a mass-independent subtraction to reg-

ulate the loop integral, replacing (for k = 0)

1

(q2 −m2)2 →
1

(q2 −m2)2 −
1

(q2 −M2)2 .

Provided M � m this serves to cut off the loop integral at q2 ≈M2.

However if one is interested in the behavior of the coupling at energies

which are small compared to the electron mass it’s more physical to

make a mass-dependent subtraction and replace

1

(q2 −m2)2 →
1

(q2 −m2)2 −
1

(q2 −m2 −M2)2 .

This subtraction serves as a good cut-off even for small M (note that

it makes the loop integral vanish as M → 0).
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(i) Find the running coupling e2(M) with this new cutoff. It’s con-

venient to set the renormalization scale µ to zero, that is, to solve

for e2(M) in terms of e2(0).

(ii) Expand your answer to find how e2(M) behaves for M � m and

for M � m. Make a qualitative sketch of e2(M).

Moral of the story: the running couplings of problems C.1 and C.2

are said to be evaluated in different renormalization schemes. Yet

another scheme is the momentum cutoff used in chapter 7. The

choice of scheme is up to you; physical quantities if calculated ex-

actly are the same in every scheme. Mass-independent schemes are

often easier to work with. But mass-dependent schemes have cer-

tain advantages, in particular they incorporate “decoupling” (the

fact that heavy particles drop out of low-energy dynamics). Also

note that at high energies the running couplings are independent of

mass, and are the same whether computed with a momentum cutoff

or a Pauli-Villars cutoff. This reflects a general phenomenon, dis-

cussed in the references: at high energies the first two terms in the

perturbative expansion of a β-function are independent of scheme.
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For the most part we’ve described fermions in terms of four-component Dirac

spinors. This is very convenient for QED. However it becomes awkward

when discussing chiral theories, or theories that violate fermion number,

since one is forced to use lots of chiral projection and charge conjugation

operators. In this appendix we introduce a more general and flexible nota-

tion for fermions: two-component chiral spinors.

As discussed in section 4.1 a Dirac spinor ψD can be decomposed into

ψD =

(
ψL
ψR

)
where ψL and ψR are two-component chiral spinors, left- and right-handed

respectively. Under a Lorentz transformation

ψL → e−i(
~θ−i~φ)·~σ/2ψL ψR → e−i(

~θ+i~φ)·~σ/2ψR . (D.1)

So left- and right-handed spinors don’t mix under Lorentz transformations:

they’re irreducible representations of the Lorentz group.

The Dirac Lagrangian can be expressed in two-component notation as

L = ψ̄Diγ
µ∂µψD −mψ̄DψD (D.2)

= iψ†Lσ̄
µ∂µψL + iψ†Rσ

µ∂µψR −m
(
ψ†LψR + ψ†RψL

)
.

Here we’ve defined the 2× 2 analogs of the Dirac matrices

σµ = (11;~σ) σ̄µ = (11;−~σ)

(the overbar on σ̄ is just part of the name – it doesn’t indicate complex

conjugation). As pointed out in section 4.1, in the massless limit the left-

209
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and right-handed parts of a Dirac spinor are decoupled and behave as inde-

pendent fields.

It turns out that complex conjugation interchanges left- and right-handed

spinors. More precisely, as you’ll show on the homework,

εψ∗L is a right-handed spinor

−εψ∗R is a left-handed spinor
(D.3)

Here ε = iσ2 = ( 0
−1

1
0 ) is a 2×2 antisymmetric matrix. This sort of relation

means that any theory can be expressed purely in terms of left-handed (or

right-handed) spinors.† That is, for a given physical theory, the choice of

spinor chirality is just a matter of convention.‡
The advantage of working with chiral spinors is that it’s easy to generalize

(D.2). For instance we can write down a theory of a single massive chiral

fermion.

L = iψ†Lσ̄
µ∂µψL +

1

2
m
(
ψTLεψL − ψ†Lεψ∗L

)
(D.4)

Here we’re using the fact that ψTLεψL is Lorentz invariant, and we’ve added

the complex conjugate −ψ†Lεψ∗L to keep the Lagrangian real. More generally,

with N chiral fermions ψLi we could have

L = iψ†Liσ̄
µ∂µψLi +

1

2
mijψ

T
LiεψLj −

1

2
m∗ijψ

†
Liεψ

∗
Lj (D.5)

We’ve seen that mass term before: it’s the Majorana mass term for neutrinos

(14.6). By Fermi statistics the mass matrix mij can be taken to be sym-

metric. Note that the kinetic terms have a U(N) symmetry ψLi → UijψLj
which in general is broken by the mass term.

Although chiral spinors make it easy to write the most general fermion

Lagrangian, one can always revert to Dirac notation. To pick out the left-

and right-handed pieces of a Dirac spinor one uses projection operators.(
ψL
0

)
=

1− γ5

2
ψD

(
0

ψR

)
=

1 + γ5

2
ψD

And to capture complex conjugation – for instance the εψ∗L appearing in

(D.4) – one uses charge conjugation. Recall that the charge conjugate of a

† For instance you could rewrite the Dirac Lagrangian in terms of two left-handed spinors, namely
ψ1 = ψL and ψ2 = −εψ∗R.
‡ Another matter of convention: chiral spinors can be re-expressed using the Majorana spinors

described in the homework.
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Dirac spinor is defined by

ψDC = −iγ2ψ∗D =

(
−εψ∗R
εψ∗L

)
.

The fact that ψDC really is a Dirac spinor is a restatement of (D.3).

References

We’ve described two-component spinors using matrix notation. It’s more

common to introduce a specialized index notation. See Wess & Bagger,

Supersymmetry and supergravity, appendix A.

Exercises

D.1 Chirality and complex conjugation

Show that complex conjugation changes the chirality of a spinor.

That is, show that the behavior under Lorentz transformations (D.3)

follows directly from (D.1). It helps to note that ~σ∗ = ε~σε.

D.2 Lorentz invariant bilinears

Show that the fermion bilinears ψTLεψL and ψTRεψR are invariant

under Lorentz transformations. It helps to note that ~σT = ε~σε.

D.3 Majorana spinors

(i) A Majorana spinor ψM is a Dirac spinor that satisfies ψMC =

ψM . Given a two-component left-handed spinor ψL, show that one

can build a Majorana spinor by setting

ψM =

(
ψL
εψ∗L

)
.

(ii) The Lagrangian for a free Majorana spinor of mass m is

L =
1

2
ψM iγ

µ∂µψM −
1

2
mψMψM .

Rewrite this Lagrangian in terms of ψL. Do you reproduce (D.4)?
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D.4 Dirac spinors

Consider two left-handed spinors ψL1, ψL2 described by the La-

grangian (D.5).

(i) Impose a U(1) symmetry ψL1 → eiθψL1, ψL2 → e−iθψL2 on the

Lagrangian.

(ii) Show that the resulting theory is equivalent to the Dirac La-

grangian (D.2).

(iii) What is the interpretation of the U(1) symmetry in Dirac lan-

guage?
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For background see chapter 12. Here I’ll just go through the main results.

Gauge structure:

The gauge group is SU(3)C ×SU(2)L×U(1)Y with gauge fields Gµ, Wµ,

Bµ and gauge couplings gs, g, g′. The field strengths are denoted Gµν , Wµν ,

Bµν . In place of g and g′ we’ll often work in terms of the electromagnetic

coupling e, the Z coupling gZ , and the weak mixing angle θW , defined by

e = gg′/
√
g2 + g′2

gZ =
√
g2 + g′2

cos θW = g/
√
g2 + g′2

sin θW = g′/
√
g2 + g′2

At the scale mZ the values are

αs = g2
s/4π = 0.119

α = e2/4π = 1/128 (vs. 1/137 at low energies)

αZ =
(gZ/2)2

4π
= 1/91

sin2 θW = 0.231

Another useful combination is the Fermi constant, related to the W mass

mW and the Higgs vev v by

GF =
g2

4
√

2m2
W

=
1√
2v2

= 1.17× 10−5 GeV−2 .

213
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Matter content:

field gauge quantum numbers

left-handed leptons Li =
( νLi
eLi

)
(1,2,−1)

right-handed leptons eRi (1,1,−2)

left-handed quarks Qi =
( uLi
dLi

)
(3,2, 1/3)

right-handed up-type quarks uRi (3,1, 4/3)

right-handed down-type quarks dRi (3,1,−2/3)

Higgs doublet φ (1,2, 1)

conjugate Higgs doublet φ̃ = εφ∗ (1,2,−1)

Here i is a three-valued generation index and ε = ( 0
−1

1
0 ) is an SU(2)-

invariant tensor. The fermions are all chiral spinors, either left- or right-

handed; I’ll write them as 4-component Dirac fields although only two of

the components are non-zero.

Lagrangian:

The most general renormalizable gauge-invariant Lagrangian is

L = LDirac + LYang−Mills + LHiggs + LYukawa

LDirac = L̄iiγ
µDµLi + ēRiiγ

µDµeRi + Q̄iiγ
µDµQi + ūRiiγ

µDµuRi + d̄Riiγ
µDµdRi

LYang−Mills = −1

2
Tr (GµνG

µν)− 1

2
Tr (WµνW

µν)− 1

4
BµνB

µν

LHiggs = Dµφ†Dµφ+ µ2φ†φ− λ(φ†φ)2

LYukawa = −ΛeijL̄iφeRj − ΛdijQ̄iφdRj − ΛuijQ̄iφ̃uRj + c.c.

The covariant derivative is Dµ = ∂µ + igsGµ + igWµ + ig′

2 BµY , where the

gauge fields are taken to act in the appropriate representation (for example

GµQi = 1
2G

a
µλ

aQi where λa are the Gell-Mann matrices, while GµLi = 0

since Li is a color singlet. Likewise WµQi = 1
2W

a
µσ

aQi but WµeRi = 0.)
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Conventions:

We assume µ2 > 0 so the gauge symmetry is spontaneously broken. The

standard gauge choice is to set

φ =

(
0

1√
2
(v +H)

)
φ̃ =

(
1√
2
(v +H)

0

)
where v = µ/

√
λ = 246 GeV is the electroweak vev and H is the physi-

cal (real scalar) Higgs field. One conventionally redefines the fermions to

diagonalize the Yukawa couplings at the price of getting a unitary CKM

mixing matrix Vij in the quark – quark – W± couplings; see section 12.3

for details. At this point we’ll switch notation and assemble the left- and

right-handed parts of the various fermions into 4-component mass eigenstate

Dirac spinors.

Mass spectrum:

m2
W =

1

4
g2v2

m2
Z =

1

4
g2
Zv

2 = m2
W / cos2 θW

m2
H = 2µ2

mf =
λfv√

2
f = any fermion

Here λf is the Yukawa coupling for f (after diagonalizing). The observed

masses are

mW = 80.4 GeV mZ = 91.2 GeV

me = 0.511 MeV mµ = 106 MeV mτ = 1780 MeV

mu = 3 MeV mc = 1.3 GeV mt = 172 GeV

md = 5 MeV ms = 100 MeV mb = 4.2 GeV
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Vertex factors:

The vertices arising from LDirac are

f

f

A −ieQγµ Q = electric charge

f

f

Z − igZ
2

(
cV γ

µ − cAγµγ5
)

cV = T 3
L − 2 sin2 θWQ, cA = T 3

L

where T 3
L =

{
1/2 for neutrinos and up-type quarks

−1/2 for charged leptons and down-type quarks

jl

W+

ν
i

j

W

l

ν

_

i



both − ig

2
√

2
γµ
(
1− γ5

)
δij

j

W+

u

d

i

− ig

2
√

2
γµ
(
1− γ5

)
Vij where Vij is the CKM matrix

j

W
_

d

u

i

− ig

2
√

2
γµ
(
1− γ5

)
(V †)ij
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q

q

g − igs
2 λ

aγµ q = any quark, a = gluon color label

The vertex arising from LYukawa is

f

f

H
−iλf√

2
f = any fermion

The vertices arising from LHiggs are

H

H

H

−6iλv

H H

HH

−6iλ

ν

W

W

H

+

_

µ

igmW gµν

ν

H

Z

Z µ

igZmZgµν
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H W

W

+

_

µ

ν
H

i
2g

2gµν

ZH

H Z

ν

µ

i
2g

2
Zgµν

The vertices arising from LYang−Mills are

r

W +

W
_

λ
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−ieg cos θW (2gµνgαβ − gµαgνβ − gµβgνα)

Z
+
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−ig2 cos2 θW (2gµνgαβ − gµαgνβ − gµβgνα)

+
µ

W
_
ν W

_
β

W +
αW

ig2 (2gµαgνβ − gµβgνα − gµνgαβ)

(note all particles directed inwards)

The additional vertices from LYang−Mills describing gluon 3– and 4–point

couplings are given in chapter 10.
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