
Supersymmetric quantum mechanics Physics G8070

References: Supersymmetric quantum mechanics was introduced (or at least
popularized) by Witten, Nucl. Phys. B185 (1981) 513 section 6. I learned
about the superfield formulation from a book by Misra, Introduction to su-
persymmetry and supergravity, although there might be a better reference.

1.1 Why supersymmetry?

Supersymmetry is an extension of Poincaré (= Lorentz plus translation) in-
variance which has the surprising feature of mixing bosons and fermions.
Why study it?

1. With some reasonable assumptions, supersymmetry is the only possible
extension of Poincaré invariance to a larger spacetime symmetry (the
Haag - Sohnius - Lopuszanski theorem).

2. Remarkably, supersymmetry is the leading candidate for physics be-
yond the standard model. Susy theories can explain the weak hierar-
chy mweak � mPlanck, they yield gauge coupling unification at the GUT
scale, and they produce natural dark matter candidates.

3. Supersymmetry plays a crucial role in constructing well-behaved string
theories. My guess is that it’s necessary for a consistent theory of
quantum gravity.

4. Supersymmetry is a powerful tool for obtaining exact results in inter-
esting strongly-coupled quantum field theories.

’nuff said.



1.2 Supersymmetric quantum mechanics: Hamiltonian
approach

The simplest example of a supersymmetric system is actually a problem in
non-relativistic quantum mechanics, a spin-1/2 particle moving on a line in
a magnetic field. The Hamiltonian is

H =

(
−1

2

d2

dx2
+ V (x)

)
11 +

1

2
B(x)σ3 (1)

acting on a two-component wavefunction. Here V (x) is the potential, B(x)
is the magnetic field which points in the z direction, and σ3 is a Pauli ma-
trix. This Hamiltonian was introduced by Witten, who pointed out that it’s
supersymmetric provided you make the specific choices

V (x) =
1

2

(
dW

dx

)2

B(x) =
d2W

dx2
.

Here W (x) is an arbitrary function known as the superpotential.

What does it mean for H to be supersymmetric? Define the operators

Q =

(
−i d
dx

− i
dW

dx

)
σ+ Q† =

(
−i d
dx

+ i
dW

dx

)
σ− (2)

where σ+ = (0
0

1
0
), σ− = (0

1
0
0
) are spin raising and lowering operators. Q

and Q† are known as supercharges. A little calculation shows that they obey
the commutation / anticommutation relations

Q2 = (Q†)2 = 0

{Q,Q†} = 2H

[Q,H] = [Q†, H] = 0

Relations of this form characterize a supersymmetry algebra.

Supersymmetry has remarkable consequences. Consider a normalized energy
eigenstate

H|E〉 = E|E〉 〈E|E〉 = 1 .



The supersymmetry algebra implies

E = 〈E|H|E〉 = 〈E|1
2
(QQ† +Q†Q)|E〉 =

1

2
‖Q†|E〉‖2 +

1

2
‖Q|E〉‖2 (3)

This expresses the energy eigenvalue as a sum of non-negative terms, so in a
supersymmetric theory

E ≥ 0

E = 0 iff Q|E〉 = Q†|E〉 = 0

Supersymmetry even lets us find the ground state wavefunction explicitly.
Let’s assume that W (x) → +∞ as x→ ±∞.1 Then given

Q =

(
0 −i∂x − iW ′

0 0

)
Q† =

(
0 0

−i∂x + iW ′ 0

)
it’s easy to see that

QΨ = Q†Ψ = 0 ⇒ Ψ =

(
AeW (x)

Be−W (x)

)
where A and B are constants. To get a normalizeable state we must set
A = 0 – this is where the assumption about the behavior of W comes in –
so the ground state wavefunction is

Ψ0 =

(
0

Be−W (x)

)
So much for the ground state. What about excited states? They all come in
degenerate spin-up/spin-down pairs, related by the action of Q, Q†. To see
this it’s helpful to note that [H, σ3] = 0, so that energy eigenstates can be
assigned a definite spin in the z direction.

1.3 Lagrangian formulation

In this section we’ll change perspective and regard the quantum mechanics
problem as a supersymmetric field theory in 0+1 dimensions. Let me em-
phasize that this is purely a change in notation! Physically we’re studying
exactly the same system.

1We’ll consider other possibilities later.



Let’s postulate a field theory and show that upon quantization it reproduces
the Hamiltonian (1). First, the field content. Introduce

x(t) real scalar field

ψ(t) complex Grassmann field

ψ̄(t) complex conjugate of ψ

These fields are functions of the spacetime coordinates, which in 0+1 means
just the time coordinate t. Grassmann numbers behave like ordinary numbers
except that multiplication anticommutes. In our case this means

ψ2 = ψ̄2 = 0 ψψ̄ = −ψ̄ψ .

We adopt the rule that complex conjugation reverses the order of Grassmann
numbers, just like Hermitian conjugation of operators, so that if ψ1 and ψ2

are Grassmann numbers
(ψ1ψ2)

∗ = ψ̄2ψ̄1 .

Next we postulate an action: S =
∫
dt L where

L =
1

2
ẋ2 +

i

2
(ψ̄ψ̇ − ˙̄ψψ)− 1

2

(
dW

dx

)2

+ ψ̄ψ
d2W

dx2
(4)

Note that the Lagrangian is real. The first term is the standard kinetic term
for a scalar field in 0+1 dimensions. The second term can be thought of as
the Dirac Lagrangian in 0+1. The 3rd term is a potential energy for the
scalar field, while depending on the exact form of W the last term could give
rise to fermion mass terms, Yukawa couplings, etc.

To show that this field theory is equivalent to Witten’s quantum mechanics
we first switch to a Hamiltonian description. I’m going to cut a few corners
here.2 We define the conjugate momenta

p = ẋ momentum conjugate to x

π = iψ̄ momentum conjugate to ψ

2For a discussion of classical mechanics with Grassmann variables see chapter 6 in
Henneaux and Teitelboim, Quantization of gauge systems. Also for a nice treatment of
(bosonic) first-order Lagrangians see Faddeev and Jackiw, Phys.Rev.Lett.60:1692,1988.



The Hamiltonian is

H = pẋ+
1

2
(πψ̇ + ˙̄ψπ)− L

=
1

2
ẋ2 +

1

2

(
dW

dx

)2

− ψ̄ψ
d2W

dx2
.

To quantize we adopt the equal-time (anti-) commutation relations

[x̂, p̂] = i (5)

{ψ̂, π̂} = i or equivalently { ˆ̄ψ, ψ̂} = 1

We have to choose an operator ordering for our quantum Hamiltonian. A
reasonable ordering – as we’ll see, the one required by supersymmetry – is

Ĥ =
1

2
p̂2 +

1

2

(
dW

dx

)2

− 1

2
(ˆ̄ψψ̂ − ψ̂ ˆ̄ψ)

d2W

dx2
. (6)

The real justification for this quantization procedure is that (up to operator
ordering) the Heisenberg equations of motion for this Hamiltonian agree with
the Euler-Lagrange equations of motion for (4).

The next step is to find linear operators which realize the (anti-) commutation
relations (5). A canonical choice3 is

p̂ = −i ∂
∂x

ψ̂ =

(
0 1
0 0

)
ˆ̄ψ =

(
0 0
1 0

)
With this choice one can readily show that

Ĥ =

(
−∂2

x +
1

2
(W ′)2

)
11 +

1

2
W ′′σ3 .

This is exactly the Hamiltonian (1) that Witten postulated.

What about supersymmetry? Consider the following transformation of the
fields:

δx = ξψ + ψ̄ξ̄ (7)

δψ = −iξ̄(ẋ+ iW ′)

δψ̄ = iξ(ẋ− iW ′)

3unique up to unitary transformations



Here ξ is a constant complex Grassmann parameter. These transformations
mix bose and fermi fields – a hallmark of supersymmetry – and with a bit of
effort one can check that the transformation leaves the action invariant (the
Lagrangian changes by a total time derivative).

For every symmetry there should be a conservation law. Rather than give
a general derivation of the fermionic version of Noether’s theorem, I’ll spe-
cialize to the problem at hand and get the conservation law by promoting
the parameters appearing in the supersymmetry transformations (7) to time-
dependent quantities.

ξ 7→ ξ(t) ξ̄ 7→ ξ̄(t)

When ξ and ξ̄ are allowed to depend on time we no longer have a symmetry
transformation. With a bit of calculation one can show that the change in
the Lagrangian is

δL = − d

dt

(
1

2
(ẋ+ iW ′)ξ̄ψ̄ − 1

2
(ẋ− iW ′)ξψ − iW ′(ξψ + ξ̄ψ̄)

)
+ξ̇(ẋ− iW ′)ψ − ˙̄ξ(ẋ+ iW ′)ψ̄ (8)

What can we conclude from this?

• If ξ and ξ̄ are constant then, as claimed, the Lagrangian changes by a
total time derivative.

• Suppose the fields satisfy their equations of motion. Then the action
should be invariant under arbitrary variations of the fields,

δS =

∫
dt δL = 0 .

(In general one has to impose boundary conditions to make the surface
terms in δS vanish.) Now consider the variation (7) where the param-
eters ξ, ξ̄ vanish as t → ±∞ but are otherwise arbitrary. One can
compute δS for this variation, by integrating the first two terms in (8)
by parts, and one sees that the equations of motion (requiring δS = 0)
imply that the quantities

Q = (ẋ− iW ′)ψ (9)

Q̄ = (ẋ+ iW ′)ψ̄



satisfy dQ
dt

= dQ̄
dt

= 0. These are the conserved supercharges associated
with supersymmetry.

A few comments are in order.

1. It’s easy to see that upon quantization the supercharges (9) agree with
the operators (2) we wrote down previously.

2. The fact that these operators satisfy {Q,Q†} = 2H means we chose
the correct operator ordering in our Hamiltonian (6).

3. As one might expect, the supercharges generate supersymmetry trans-
formations. Introduce the bosonic Hermitian linear combination G =
ξQ− ξ̄Q†. One can check that (7) is equivalent to

δx = i[G, x]

δψ = i[G,ψ]

δψ̄ = i[G, ψ̄]

1.4 Auxiliary fields

Symmetries are useful because they constrain the form of the Lagrangian.
We’re used to defining a field theory by specifying the field content and the
symmetries, then working out the most general Lagrangian compatible with
the symmetries. For supersymmetry this program seems to crash. The susy
transformations we’ve worked out

δx = ξψ + ψ̄ξ̄

δψ = −iξ̄(ẋ+ iW ′)

δψ̄ = iξ(ẋ− iW ′)

depend explicitly on the superpotential, so they depend on the very La-
grangian we’d like to construct. There’s nothing wrong with this, but it
makes it very hard to exploit the power of supersymmetry.



Fortunately there’s a cure for this sort of problem, which comes up again
and again in formulating susy theories. Introduce an additional real bosonic
field d(t) and consider the Lagrangian

Laux =
1

2
ẋ2 +

i

2
(ψ̄ψ̇ − ˙̄ψψ) +

1

2
d2 − dW ′ + ψ̄ψW ′′ . (10)

Note that the Lagrangian doesn’t involve any time derivatives of d, so d
isn’t a propagating degree of freedom. It’s known as an auxiliary field. This
theory is completely equivalent to (4). You can see this both at the classical
and quantum levels.

Classical argument

Varying the action, the equation of motion for d is just ∂L
∂d

= 0 which
fixes d = W ′(x). Again this shows that d isn’t an independent degree
of freedom: it’s a constrained variable, fixed by its equation of motion
in terms of x. Substituting d = W ′ back into (10) reproduces (4).

Quantum argument

d appears quadratically in the Lagrangian. Performing the Gaussian
path integral over d gives∫

DxDψDψ̄Dd ei
R

dtLaux = const.

∫
DxDψDψ̄ ei

R
dtLaux|d=W ′ .

The overall constant can be absorbed into the normalization of the path
integral.

How does supersymmetry look with auxiliary fields? Repeating the argu-
ments towards the end of the last section you can show that the action is
invariant under the supersymmetry transformation

δx = ξψ + ψ̄ξ̄ (11)

δψ = −iξ̄(ẋ+ id)

δψ̄ = iξ(ẋ− id)

δd = −i(ξψ̇ + ξ̄ ˙̄ψ) .



The corresponding supercharges

Q = (ẋ− id)ψ

Q̄ = (ẋ+ id)ψ̄

are conserved, dQ
dt

= dQ̄
dt

= 0, but showing that these supercharges generate
the right susy transformations seems non-trivial.

We’ve achieved our goal, since the supersymmetry transformations (11) make
no reference to any Lagrangian. You might be left wondering how the trans-
formations (11) and (7) are related. On the homework you’ll show that
they’re equivalent for field configurations that satisfy the equations of mo-
tion.

1.5 Superfields

We’re getting there. . . the only problem with the susy transformations (11)
is that it’s hardly obvious that they’re a symmetry of the Lagrangian (10).
We’re going to introduce some notation with the goal of making supersym-
metry manifest.

To this end we introduce “superspace,” a space with one real bosonic coor-
dinate t and a complex conjugate pair of Grassmann coordinates θ, θ̄.

superspace = {(t, θ, θ̄)}

We also introduce the notion of a “superfield”, a function F on superspace
with definite transformation properties under supersymmetry.

F = F (t, θ, θ̄)

We’ll specify the susy transformation properties shortly.

This seems very abstract, but if you recall the rules for Grassmann variables

θ2 = θ̄2 = 0 θθ̄ = −θ̄θ

you realize that superfields have very simple Taylor series expansions in pow-
ers of the Grassmann coordinates:

F (t, θ, θ̄) = x(t) + θψ(t) + ψ̄(t)θ̄ + θθ̄d(t) .



This is known as the component expansion of the superfield. Concentrating
on the simple case where F is a real bosonic function on superspace we see
that x(t) is a real bosonic field, ψ(t) is a complex Grassmann field, ψ̄(t) is
the complex conjugate of ψ(t), and d(t) is a real bosonic field.

How should supersymmetry act on a superfield? Here we’ll postulate that
the individual components of the superfield have the susy transformation
properties given in (11).

δF = δx+ θδψ + (δψ̄)θ̄ + θθ̄δd

This is part of our definition of a superfield. With a little algebra one can
show that

δF = ξQ∂F + ξ̄Q̄∂F (12)

where we’ve defined some differential operators on superspace4

Q∂ = ∂θ + iθ̄∂t Q̄∂ = ∂θ̄ + iθ∂t .

The notation is a little confusing. The differential operators Q∂, Q̄∂ are not
to be confused with the conserved supercharges Q, Q̄. Also Q̄∂ isn’t related to
Q∂ by complex conjugation. Rather one has the somewhat counterintuitive
identity Q̄∂F = −(Q∂F )∗; note that this makes the right hand side of (12)
real.

This leads to a very nice geometrical interpretation of supersymmetry as a
type of translation in superspace. The best way to understand this is by
analogy with ordinary time translation, as generated by some Hamiltonian
H.

i[εH, F ] = ε∂tF ⇔ H generates time translation t→ t+ ε

The analogous statement for supersymmetry is

i[ξQ−ξ̄Q†, F ] = ξQ∂F+ξ̄Q̄∂F ⇔ supercharges generate translations in superspace

What is the translation? To find out we just have to let the differential
operators act on the superspace coordinates.

δ(t, θ, θ̄) = (ξQ∂ + ξ̄Q̄∂)(t, θ, θ̄) = (iξθ̄ + iξ̄θ, ξ, ξ̄)

4Grassmann derivatives are defined by ∂θθ = ∂θ̄ θ̄ = 1, ∂θ θ̄ = ∂θ̄θ = 0.



That is, supersymmetry acts as a translation

θ → θ + ξ θ̄ → θ̄ + ξ̄ t→ t+ i(ξθ̄ + ξ̄θ)

on the superspace coordinates. Again you can see that supersymmetry is
an extension of the Poincaré group to include translations in the Grassmann
directions.

1.6 Constructing supersymmetric actions

Now let’s see if we can use superfields to rewrite the action in a way that
makes supersymmetry manifest.

In order to write supersymmetric kinetic terms we need a derivative operator
that is compatible with supersymmetry. The construction is a little subtle.5

Define the differential operators

D = ∂θ − iθ̄∂t D̄ = ∂θ̄ − iθ∂t .

These are known as supercovariant derivatives. They look a lot like the oper-
ators Q∂, Q̄∂ except that the ∂t terms have opposite sign. A little calculation
reveals that the D’s and Q∂’s all anticommute,

{D,Q∂} = {D, Q̄∂} = {D̄,Q∂} = {D̄, Q̄∂} = 0 .

Why is this important? Let’s work out the susy variation of DF .

δsusyDF = DδsusyF = D(ξQ∂ + ξ̄Q̄∂)F = (ξQ∂ + ξ̄Q̄∂)DF

(To see the first equality imagine writing everything in terms of component
fields. The last equality relies on the anticommutation relations.) So DF has
the same susy transformation rule as F itself: the supercovariant derivative
maps superfields to superfields. Likewise for D̄.

Now, can we write a supersymmetric action? It’s easy to see that the prod-
uct of two superfields has the right transformation properties to be another
superfield. So consider the superspace Lagrangian

Lsuper = −1

2
D̄FDF −W (F )

5It has a geometric interpretation in superspace given on p. 26 of Wess & Bagger.



where the superpotential W is an arbitrary function of F . L is a real6 bosonic
superfield, and it involves at most two time derivatives, so this seems like
a promising starting point. Can we make an invariant action out of L?
Recall that the susy variation of the top component of a superfield is a total
derivative:

F = · · ·+ θθ̄d

δsusyd = −i d
dt

(ξψ + ξ̄ψ̄)

This is true for any superfield, so the action

S =

∫
dt (Lsuper)θθ̄ component

is invariant under supersymmetry. This is usually written in a fancier way.
Grassmann integration is defined by∫

dθ = 0

∫
dθ θ = 1

∫
dθ̄ = 0

∫
dθ̄ θ̄ = 1

d2θ ≡ dθ̄dθ so

∫
d2θ θθ̄ = 1

This means for any superfield∫
d2θ F = (F )θθ̄ component .

In particular we can write the manifestly supersymmetric action

S =

∫
dtd2θ

(
−1

2
D̄FDF −W (F )

)
.

I leave it as a homework exercise to show that this is equivalent to the
component action (10).

6One has the somewhat counterintuitive identity (DF )∗ = −D̄F .


