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References: All this material can be found in Wess & Bagger. I’ll just quote
the main results. I use Wess & Bagger conventions but denote Lorentz vector
indices µ, ν rather than m,n.

1.1 Superspace and superfields

Superspace is the collection of points zM =
(
xµ, θα, θ̄α̇

)
where

xµ real bosonic coordinates (µ = Lorentz vector index)

θα complex Grassmann coordinates (α = left-handed spinor index)

θ̄α̇ complex conjugates of θα (α̇ = right-handed spinor index)

Supersymmetry is a translation

xµ → xµ − iξ̄σ̄µθ − iξσµθ̄

θα → θα + ξα

θ̄α̇ → θ̄α̇ + ξ̄α̇

where ξα, ξ̄α̇ are Grassmann spinor parameters. This translation is generated
by differential operators Q∂α, Q̄∂α̇.

δzM =
(
ξαQ∂α + ξ̄α̇Q̄

α̇
∂

)
zM

Q∂α =
∂

∂θα
− iσµ

αα̇θ̄
α̇ ∂

∂xµ

Q̄α̇
∂ =

∂

∂θ̄α̇

− iσ̄µα̇αθα
∂

∂xµ

We can define some supercovariant derivatives Dα, D̄α̇ which anticommute
with all the Q∂’s, and therefore map superfields to superfields.

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇ ∂

∂xµ

D̄α̇ =
∂

∂θ̄α̇

+ iσ̄µα̇αθα
∂

∂xµ



A general (or unconstrained) superfield is an arbitrary complex function on
superspace F (xµ, θα, θ̄α̇). Under a supersymmetry transformation we have

δF =
(
ξQ∂ + ξ̄Q̄∂

)
F .

An unconstrained superfield provides a reducible representation of supersym-
metry. To find irreducible representations we need to impose some constraints
on F that are preserved under supersymmetry.

1.2 Chiral superfields

A chiral superfield Φ is a superfield that satisfies D̄α̇Φ = 0. It has the
component expansion

Φ = φ(x) +
√

2θαψα(x) + θθF (x) + · · ·

where φ is a complex scalar field, ψ is a left-handed spinor field, F is a com-
plex scalar auxiliary field, and · · · denotes extra terms built from derivatives
of these fields. The supersymmetry transformations of the component fields
are

δφ =
√

2ξαψα

δψα = i
√

2σµ
αα̇ξ̄

α̇∂µφ+
√

2ξαF

δF = i
√

2ξ̄α̇σ̄
µα̇α∂µψα

The complex conjugate of a chiral superfield is an antichiral superfield φ̄
satisfying DαΦ̄ = 0.

You can write an invariant action by integrating an arbitrary superfield∫
d4xd4θ, or by integrating a chiral superfield

∫
d4xd2θ. The standard ki-

netic term for a chiral superfield is

Skin =

∫
d4xd4θ Φ̄Φ

=

∫
d4x − ∂µφ

∗∂µφ− iψ̄σ̄µ∂µψ + F ∗F



You can add a superpotential

Spot =

∫
d4d2θW (Φ) + c.c.

=

∫
d4xW ′(φ)F − 1

2
W ′′(φ)ψψ + c.c.

The superpotential has to be a holomorphic function of Φ, i.e. it can only
depend on Φ not on Φ∗. Eliminating the auxiliary field we have the potential
for the scalar field

V(φ, φ∗) = F ∗F =

∣∣∣∣∂W∂φ
∣∣∣∣2 .

1.3 Abelian vector superfields

An abelian vector superfield V is a superfield that is constrained to be real,
V ∗ = V . We’re going to impose gauge invariance under transformations

V → V + Λ + Λ̄

where Λ is a chiral superfield. In “Wess-Zumino” gauge a vector superfield
has the component expansion

V = −θσµθ̄Aµ(x) + iθθθ̄λ(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x)

where Aµ is a real vector field, λα is a spinor field, and D is a real scalar
auxiliary field. In WZ gauge you’re just left with conventional gauge trans-
formations of Aµ, namely

Aµ → Aµ + ∂µω(x)

with λα, D invariant. One can define a gauge-invariant “field strength” for
V , namely

Wα = −1

4
D̄α̇D̄

α̇DαV .

One can show that Wα is a chiral superfield. It lets us write a gauge-invariant
and supersymmetric action for V .

S =

∫
d4xd2θ

1

4
W αWα + c.c.

=

∫
d4x − 1

4
FµνF

µν − iλσµ∂µλ̄+
1

2
D2 .



1.4 Super Yang-Mills

In non-abelian gauge theory we promote V to a Hermitian matrix, V = V aT a.
Here T a are a set of generators normalized to TrT aT b = 1

2
δab. In WZ gauge V

contains the gauge field Aµ = Aa
µT

a, an adjoint spinor field λα = λa
αT

a, and
an adjoint scalar auxiliary field D = DaT a. You can couple V to a collection
of chiral multiplets Φi in (say) the fundamental representation. The general
supersymmetric and gauge-invariant action is

S =

∫
d4xd4θ

∑
i

Φ†
ie

gV Φi +

[∫
d4xd2θ

(
1

2
TrWαWα +W (Φ)

)
+ c.c.

]
.

Here g is the gauge coupling and the superpotential W is a gauge-invariant
holomorphic function of the Φi’s. Gauge transformations act on these fields
via

Φi → e−igΛΦi egV → e−igΛ†
egV eigΛ

where Λ is an adjoint chiral multiplet. Expanding the action in components
you find (in WZ gauge)

S =

∫
d4x − 1

2
TrFµνF

µν − (Dµφi)
†Dµφi + V(φi, φ

†
i ) + fermions

where the potential energy is a sum of F-term and D-term contributions.

V =
∑

i

F †
i Fi +

1

2

∑
a

(Da)2

=
∑

i

∣∣∣∣∂W∂φi

∣∣∣∣2 +
1

2
g2
∑

a

(∑
i

φ†iT
aφi

)2


